SPSS° 11.0 Developer'’s Guide

SPSS is a registered trademark and the other product names are the trademarks of SPSS Inc. for its proprietary computer
software. No material describing such software may be produced or distributed without the written permission of the owners
of the trademark and license rights in the software and the copyrights in the published materials.

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subdivision (c)(1)(ii) of The Rights in Technical Data and Computer
Software clause at 52.227-7013. Contractor/manufacturer is SPSS Inc., 233 South Wacker Drive, 11th Floor, Chicago, IL
60606-6307.

General notice: Other product names mentioned herein are used for identification purposes only and may be trademarks of
their respective companies.

TableLook is a trademark of SPSS Inc.

Windows is a registered trademark of Microsoft Corporation.

DataDirect, DataDirect Connect, INTERSOLYV, and SequeLink are registered trademarks of MERANT Solutions Inc.
Portions of this product were created using LEADTOOLS © 1991-2000, LEAD Technologies, Inc. ALL RIGHTS
RESERVED.

LEAD, LEADTOOLS, and LEADVIEW are registered trademarks of LEAD Technologies, Inc.

Portions of this product were based on the work of the FreeType Team (http:\\www.freetype.org).

SPSS® 11.0 Developer’s Guide
Copyright © 2001 by SPSS Inc.

All rights reserved.

Printed in the United States of America.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Chapter

Overview

TheSPSS Developer’s Guigwovides information about the developer’s tools that
are included with the SPSS for Windows product. The tools can be used with the Base
system and all of its optional components.

Developers Tools

The developer’s tools include:

OLE Automation. A technology standard that makes it possible for you to write
programs that incorporate, or extend, the functionality of SPSS. OLE Automation
allows your application to access SPSS objects and manipulate them using methods
and properties. Applications can be written in a variety of programminguages,

such asvisual Basic and C++.

Third-party APIL. An application interface that enables you to configure SPSS so that
your programs can be launched from SPSS menus. Use the interface to give users
access to features not provided by SPSS. The working SPSS data file can be passed
to the third-party application as an optional parameter. The third-party APl works by
recognizing specific Windows registry keys.

Input/output DLL. A dynamic link library that enables you to write applications that
read and write data in an SPSS data file format. This tool is often used to share data
between third-party applications and SPSS.

3

Overview

Production Facility. A Visual Basic application that uses SPSS OLE Automation to run
SPSS unattended and automatically produces output from regularly repeated, time-
consuming analyses.

Scripting facility. A built-in, VBA-compatible Sax Basic development environment

that allows developers to write and run scripts to automate SPSS tasks. You can use it
to produce output (like the Production Hég) and to do regularly repeated, time-
consuming editing of output. Scripting works by using OLE Automation to manipulate
SPSS objects.

MACRO and MATRIX procedures. Built-in SPSS commands that allow you to write
customized statistical and data manipulation procedures for use within SPSS.

Each component helps applications developers build upon SPSS for Windows,
although no single application will use all of them.

Documentation Map

You can work through this guide sequentially, or you can jump to topics that interest
you. Install SPSS for Windows before continuing so that you can access the online
Help and run the examples.

Programmer’s introduction to SPSS. You must understand how SPSS works before you
can be productive using the SPSS developer’s tools. Chapter 2 tells you what you need to
know about SPSS before you start developing applications with it.

OLE Automation quickstart. Learning how to write applications that manipulate SPSS
objects begins with an understanding of the object hierarchy. Chapter 3 describes the
object hierarchy and gives you enough information to start programming with the
SPSS application.

Scripting quickstart. The foundation of scripting is the OLE Automation object model.
Once you're familiar with that, Chapter 4 gives you enough information to start writing
and running scripts within SPSS. It also introduces autoscripts, which can be used by
anyone who understands how to use SPSS.

Example scripts and applications. Chapter 5 describes the sample code shipped with
SPSS and tells you where to find the example scripts and applications.

Input/output DLL. Appendix A outlines the steps for developing an application using the
I/O DLL procedures and contains a reference guide for DLL procedures.

Third-party API. Appendix B is a guide to editing the Windows Registry to use the third-
party API.

4

Chapter 1

Tutorial. SPSS is distributed with a tutorial, which includes topics on customizing
SPSS and automating output production. To access the tutorials, from the SPSS menus
choose:
Help
Tutorial
Click the book icons to expand topics and seleaitomizing SPSS andAutomated
Production.

OLE Automation Help. SPSS is distributed with a complete online reference to all OLE
Automation objects, methods, and properties. Access the online Help by double-
clicking spssole.hip in your SPSS installation directory.

Online help is accessible from most development environments. To get help for the
SPSS objects:

Include the SPSS type libraries in your development project.
Open your development environment’s object browser.

Select the object, method, or property of interest and gress

The OLE Automation Help file includes the object hierarchy diagram with links to
high-level objects. Seledtee View of objects from the Contents tab, and then click the
object of interest. You'll get a Help topic that includes a code example, lists all methods
and properties for the object, and links to their Help topics.

Production Facility documentation and online Help. For an introduction to this topic, see
“Working with the SPSS Production Facility” on p. 24. For more information, see the
SPSS Base User's Guide

You can access online Help by double-clickisygssprod. hip in your SPSS
installation directory. You can also launch SPSS, setepics from theHelp menu,
click theindex tab, and search on the word “production.”

Scripting facility documentation and online tips. For an introduction to this topic, see
“Working with the SPSS Scripting Facility” on p. 22. For more information, se&PR8S
Base User’s Guide

You can access the online scripting tips while you are running SPSS. Seilipdig
Tips from theHelpmenu of a Script window. Selestript Language for Sax Basic help.

MACRO and MATRIX command language. For more information, seiacro Facility
Command Syntax andMatrix Command Syntax in the SPSS online Help, and see also the

5

Overview

SPSS Syntax Reference GuiketheSPSS Syntax Reference Guiakecro syntax is
listed undeIDEFINE—!ENDDEFINE, and there are three macro examples inSRSS
Syntax Reference Gui@ppendix “Using the Macro Facility.” Matrix syntax is listed
underMATRIX—!ENDMATRIX.

Using the SPSS Developer's Tools

The developer’s tools offer a variety of integration strategies, including application
integration, customization, and automation.

Integration. Integrate your application into SPSS, or integrate SPSS into your
application. If you want your application to be launched by users from the SPSS
menus, use the third-party API tool. Once launched, your application will coexist with
SPSS until you close your application or SPSS. If you want to control SPSS from your
application, use OLE Automation.

Data transfer is possible. The third-party APl will send a copy of the SPSS working
data file to your application, you can use the input/output DLL to have your application
create data files that SPSS can process, and you can use OLE Automation to get data
values from SPSS.

Customization. You can customize the SPSS user interface and output Qdifg
Automation and scripting. You can add your statistical and data manipulation
procedures to SPSS with tiMACRO andMATRIX commands.

Automation. You can automate production of SPSS output using the Production Facility
and perform batch editing of output using the scripting facility.

More Information

SPSS product information. Check the SPSS Web sitbtfp.//www.spss.com) often for
product information, updates, patches, and news about planned software releases and
new products.

SPSS Script eXchange. Download useful scripts and share your scripts at the Script
eXchange Web site dtitp.//www.spss.com/software/spss/scriptexchange. Check the
site often for new scripts.

SPSS CD-ROM. Check the SPSS for Windows CD-ROM developer’s folder
(Ispssldeveloper) for readme files and other late-breaking information.

6
Chapter 1

Visual Basic information. Microsoft maintains Web sites for Visual Basic
(http://msdn.microsoft.com/vbasic/default.asp) and Visual Basic for Applications
(http://msdn.microsoft.com/vba/default.asp). These sites include news, code examples,
and links to other useful sites.

Statement of Compatibility

SPSS makes no promises, expressed or implied, to keep future versions of the SPSS
for Windows or the developer’s tools compatible with applications built using the
current tools. Although it is in our best interest to keep your applications upgradable,
we cannot predict the future direction of our product line and the effect of that direction
on the applicability of the interfaces described in this guide.

Technical Support

SPSS provides technical support for the developer’s tools to customers who have
purchased the full version of SPSS software. (Supporbiprovided for GradPack
customers.) You, the developer, are responsible for the support of all products built
using these tools.

Technical support for the developer’s tools includes helping a customer make the
software run as documented. This includes the installation process of our software,
printing, and operational problems when things don’t work as documented. Technical
support includes helping a customer use what is in the documentation to get a specific
task done by expanding on what is documented and giving an example of how to do it.
SPSS does not provide technical support for non-SPSS products used in conjunction
with the SPSS developer’s tools, such as Visual Basic, Sax Basic, or other applications.

Distributing Your Finished Application

You have the right to distribute the application that you have developed using the SPSS
developer’s tools. Users of your application must license their own copies of the SPSS
for Windows software by contacting the Sales Department at SPSS Inc. For any other
types of licensing or distribution arrangements, please contact SPSS Inc. directly.

In order for your application to run properly, you must have your users install the
SPSS for Windows software first and then install your application.

Chapter

Programmers Introduction
to SPSS for Windows

For most of your applications, you will have more success using the SPSS developer’s
tools if you understand how SPSS works. If you intend only to integrate your
application into SPSS and have users launch it from an SPSS menu, you can skip this
chapter and proceed directly to the third-party APl documentation in Appendix B.

When an end user works with SPSS, he or she can choose from two alternative
interfaces: the graphical user interface of menus and dialog boxes or the SPSS
command syntax language.

Functionally, the graphical interface and command language nearly overlap. You
can use command syntax to produce virtually any SPSS output, but you cannot use
commands to modify output. Output editing mustome with the graphical interface
or through OLE Automation.

You can design your program to use the graphical interface, the command
language, or both. You can use OLE Automation to invoke SPSS dialog boxes or to
execute command syntax. When the output is produced, you can use OLE
Automation to edit the output objects. In general:

m Use SPSS command syntax or invoke SPSS dialog boxes to produce output (for
example, to run data transformations, statistical procedures, and charting
procedures).

m Use OLE Automation directly on output objects to format and edit your output.

This chapter introduces you to the basic features of SPSS, including:
m Working with SPSS windows and output

m Basic steps for running an analysis

m Working with the SPSS scripting facility

8

Chapter 2

m Working with the SPSS Production Facility
m Working in distributed mode
The emphasis in this chapter is on programming equivalents for performing various

end-user tasks. If you're already familiar with SPSS and need aydundtion to SPSS
OLE Automation, skip to Chapter 3.

Working with Windows and Output

Window

SPSS for Windows provides a powerful statistical analysis and data management
system. It has specialized window types that allow users to request, display, and edit
the output they want. It also has specialized output items to display results.

Types

SPSS provides specialized window types for end users. In the SPSS object model,
these windows correspond to OLE Automation document objects that have methods
and properties that support most of the functiggdound in the user interface. The
window types, their purpose for the end user, and the corresponding OLE Automation
object can be summarized as follows:

Data Editor. The working data file is displayed in the Data Editor, which is a
spreadsheet-like system for entering and editing data. The condisyy OLE
Automation object isSpssDataDoc.

Viewer. All statistical results, tables, charts, and other output are displayed in the
Viewer. The Viewer makes it easy to browse and edit your results, selectively show and
hide output, and move presentation-quality output items (for example, tables and
charts) between SPSS and other applications. The corresponding OLE Automation
object isISpssOutputDoc.

Draft Viewer. Output is displayed as simple text (instead of presentation-quality output
items) in the Draft Viewer. Editing is limited. The corpending OLE Automation
object isISpssDraftDoc.

Syntax. Syntax is displayed and edited in the syntax window. You can type the syntax
directly or create command syntax by pasting dialog box choices into a syntax window,
where your selections appear in the form of command syntax. You can save these

9

Programmer’s Introduction to SPSS for Windows

commands in a file for use in subsequent SPSS sessions. The corresponding OLE
Automation object i3SpssSyntaxDoc.

Script. The script window provides a programming environment for SPSS scripts.
Scripts allow you to customize and automate many tasks in SPSS. The script window
doesn’t have a corresponding OLE Automation object—it is a programming
environment.

Output Items

When an end user interacts with SPSS dialog boxes or runs command syntax, the user
produces output in a Viewer or Draft Viewer window. SPSS output consists of a
number of different types of items. These items correspond to OLE Automation
objects and can be manipulated with their respective methods and properties much like
they can be manipulated with the user interface. The SPSS output item types are:

Pivot tables. Many SPSS statistical procedures produce pivot table output that allows
users to view results in many different ways. Users can switch (pivot) row and column
variables, selectively show and hide categories, and change layers in multidimensional
tables. Pivot tables are produced from the Analyze menu. The corresponding OLE
Automation object i®ivotTable.

Charts and interactive graphics. SPSS produces high-resolution charts, including pie
charts, bar charts, histograms, scatterplots, and 3-D graphics. Charts and interactive
graphs are produced by some statistical procedures on the Analyze menu and by the
Graphs menu. The corresponding OLE Automation objectssagsChart (charts) and
ISpssIGraph (interactive graphsSpssiGraph has a richer set of methods and properties
that support eiting.

Text. A few SPSS statistical procedures produce text output. Warnings, logs, and
Viewer titles are text output. All tabular output to a Draft Viewer window is text. The
corresponding OLE Automation objecti&pssRtf.

Map. Maps can be produced by SPSS if you have the Map option installed.

The object model description in Chapter 3 shows the window and output item objects
in the SPSS object hierarchy (see Figure 3-1).

10
Chapter 2

Overview of Running an Analysis

The basic steps to analyze data with SPSS are:
m Launch SPSS.

m Get data into SPSS. You can open a previously saved SPSS data file, read a
spreadsheet, database, or text data file, or enter data directly in the Data Editor.

m Select a procedure. You can select a procedure from the menus or use SPSS
command syntax to transform data, calculate statistics, and to create charts,
interactive graphs, and maps.

m Select the variables and run the procedure. The variables in the data file are
displayed in a dialog box for the procedure.

m View and manipulate the results. Results are displayed in the Viewer. You can
browse, edit, and pivot the output and save it for use at a later time.

Each step and its corresponding OLE Automation commands are discussed in the
following sections.

Launching SPSS

End users launch the SPSS application by selecting it from the Windows Start menu or
by double-clicking the application executabépsswin.exe.

Figure 2-1
Launch SPSS from Windows Start menu

|
Mew Office Document
—

~a
E Open Office Document
Sequelink 4.5 Server for NT

SPS5 Data Acocess Pack
SPSS Data Connectivity

il SPSS 100 for Windows

@ SPSS 10.0 Production Faciliy
g SPSS Map Geodictionany Manager

Programs

C

5 Dacuments 4 L 5 Windows & 5PSS Map Geaset Manager
E I% Setting: 3
@ » P

& ueb

Bun.

Shut Down...

%Inbox - Micros...l @ E:

11

Programmer’s Introduction to SPSS for Windows

Programmers launch SPSS by creating the Application object. The Application object
is the container object where all other SPSS OLE Automation objects exist. Your
program can run SPSS and access its properties directly. The specific techniques for
creating the application vary depending on which programming language you are
using. In Visual Basic, you can use tbesateObject function:

Dim objSpssApp As ISpssApp
Set objSpssApp = CreateObject("SPSS.Application")

This example accomplishes the equivalent of the end-user action shown in Figure 2-1.
The first statement creates a variable namigdpssApp and assigns it to the

Application object class. The second statement starts SPSS and stores a reference to it
in the objSpssApp variable.

Getting Data into SPSS

SPSS can handle data in a number of spreadsheet, database, and text formats. It can
also read data contained in databases using ODBC drivers. Users can open data files
using the File menu or SPSS command syntax.

Figure 2-2
Open data file from menu

T |

Lookin: |3 Spss10

P

Apigty 2 zay
gty zay

Breast cancer survival sav Glass strain. sav
Carz.zav Growth study, zaw
crby_fipz.zav G55 93 for Mizzing Values.zav

Coronary artery data. zay 35593 subset zav

[i
File name: IEmpIo_l,lee data zav Qpen I
Files of bype: ISPSS [*.zav) LI Pazte |
Cancel |

12

Chapter 2

For programmers, the options for bringing data into SPSS are:

For SPSS1{sav) data files, you can use tl@enDataDoc method on the
Application object. For example:

Set objDataDoc = objSpssApp.OpenDataDoc("d:\spss10\employee data.sav")

This example accomplishes the equivalent of the end-user action shown in
Figure 2-2.

For data files saved in any of the formats recognized by SPSS (including SPSS data
files, all spreadsheet and database formats, and ODBC), use SPSS command
syntax. (For an introduction to command syntax, see “Running Procedures with
SPSS Command Syntax” on p. 14 and “Creating Command Syntax” on p. 16.)

If necessary, you can paste data from the Windows clipboard by usirkathe
method on the Data Document object. You may lose precision with this method
because the values pasted are displayed values—often rounded to one or two
decimal places—rather than the actual values stored in memory.

For instructions on how to use the I/O DLL to read and write SPSS data files directly,
see Appendix A.

Selecting and Running a Procedure

End users can select and run procedures in SPSS either by choosing dialog boxes from
the menus or by using command syntax. Both of these methods are available to
programmers through OLE Automation.

Before writing an application, programmers, like end users, must decide what

procedures they want to run. Use the graphical interface to accomplish the tasks that
you want your application to perform. As you work with the interface, consider at each
step which procedures, outputitems, and window types you are using. This knowledge,
together with the information that follows in this chapter and in Chapter 3, will enable
you to start programming with SPSS.

13

Programmer’s Introduction to SPSS for Windows

Figure 2-3
Selecting procedures from menus

Employee data_sav - SPS5 Data Edi [_ O] x|
File Edit “iew Data Transform Graphz Utilities Window Help
,, - 3
HEE = hl;;qllglciffj!
|'| 1id F Cusztom T ables 8 Descrptives. .
; Compare Meanz F Exploe. . =
Id el ﬁem:ral L;ear M odel 4 Ergsxtabs... el _I
1 1| rale Correlate p TG o7 000
2 2 |Male Eegression ¥ || Clerical $40 200
3 3|Female Loglinear ¥ || Clerical $21 450
4 4|Female Clazsify b | Clerical $21 900
5 5|Male Data Reduction * || Clerical $45 000
B B |Male seale * | Clerical $32,100
7 7 [Male Honparametiic Tests ¥ {70 e) §36 000
5 8[Female | Lmeaefes " Clerical | $21900
— Survival 3 — — =
<[+ |\ Data view ,(:\?ariable Wign Multiple Fiesponse , _>|_I
Descriptives Mizzing Walue Snalpsis... I iz ready v
Figure 2-4

Selecting variables for analysis

« Descriptives m |

-@ Ermployes Code [id] = Hatels]
@ Date of Bith [bdate: @ Current Salany [zalan]

@ Educational Level [@ Beqginning Salary [zalbe Paste |
@ Employment Catego Reset
4 Morths since Hire [j _I
4 Previous Experiencs ﬂl
G Minority I:Iassificatio_l Help |

[T Save standardized values as variables DOptions... |

14

Chapter 2

Running Procedures with SPSS Dialog Boxes

You can run procedures by selecting dialog boxes from the menus. If you want your
application to present dialog boxes to your end user (and allow end-user intervention),
you can invoke many SPSS dialog boxes through OLE Automation by using the
InvokeDialogAndExecuteSyntax method on the Data Document object. The
InvokeDialogAndExecuteSyntax method is applied to the Data Document object because
SPSS requires data before these dialog boxes can be invoked. This example opens the
Descriptives dialog box, as shown in Figure 2-4:

Dim strPath as String
strPath = "analyze>descriptive statistics>descriptives"
objDataDoc.InvokeDialogAndExecuteSyntax (strPath, SpssWindowParent, True)

ThestrPath parameter contains the menu path to the dialog box that you want to invoke.
For example, the dialog box for the Descriptives procedure can be found in the user
interface on the Descriptive Statistics submenu of the Analyze menu. Once your
application has opened the dialog box, the end user selects variables and options as if
running SPSS in the normal manner. When the user cliecksSSPSS executes the
commands and then returns control to your program.

This method works on most dialog boxes invoked from the Analyze and Graphs
menus and on some dialog boxes invoked from the Transform and Data menus. (In
general, if a dialog box hasRastebutton, you can use this method.)

Running Procedures with SPSS Command Syntax

The SPSS command language is an alternative to the SPSS dialog box interface.
Command syntax provides complete access to all statistical and graphical procedures,
data transformations, and most file operations. While most end users find the menus
and dialog boxes easier to use, command syntax is a powerful tool. It provides access
to additional procedures and options not available from the menus and makes it
possible to save command streams in a syntax file so that they can be rerun.

15

Programmer’s Introduction to SPSS for Windows

Figure 2-5
Syntax window displaying command syntax

g4 myiob.SPS - SPSS Syntax Editor [_ O] x|
Fil= Edit “iew Analyze Graphs Utilitiez Bun ‘Window Help

=S| R o Ok @] »| 2|7 |

DESCRIFTVES
SARIABLES=salbeqin salary
FETATISTICS=MEAN STODEY MIN BAK

|T|SF'SS Processor is ready

Command syntax is also a powerful tool for programmers. You can execute any valid
SPSS command from within your application, allowing you full access to SPSS’s
capabilities. Always test your syntax byrming it interactively from a syntax window
before you incorporate it into your application. Use BxecuteCommands method on

the SPSS Application object. This example runs the syntax shown in Figure 2-5:

Dim strCommand as String

strCommand = strCommand + "DESCRIPTIVES"

strCommand = strCommand + " VARIABLES=salary salbegin"

strCommand = strCommand +" /STATISTICS=MEAN STDDEV MIN MAX ."
objSpssApp.ExecuteCommands strCommand, True

Rather than hard-coding the variables and statistics selections as shown, you can
design your application to build the syntaxstiCommand based on user input.

If you want to execute a long stream of commands or separate syntax from your
code, you can save the commands in a syntax fikp§) and use th&xecuteinclude
method on the SPSS Application objeEtecuteinclude works like the
ExecuteCommands method except that it takes the name of a syntax file, rather than a
string variable, as a parameter. This example runs the syntax file shown in Figure 2-5:

Dim strFilename as String
strFilename = "d:\spss10\myjob.sps"
objSpssApp.Executelnclude strFilename, False

16

Chapter 2

When running syntax commands usiBgecuteCommands methods, specify either
True (for synchronous execution) or usevaile-wend loop to check if SPSS is busy. If
you use thekun method on theyntaxDoc object, you must use th&hile-wend loop
because synchronous mode is not available for this method.

Using command syntax allows your application greater flexibility and control than
invoking dialog boxes from the graphical interface and makes it possible to run SPSS
without the user’s knowledge.

Running Procedures with the Production Facility

SPSS includes a separate application, the SPSS Productidityi-deat can be used
by end users and programmers to automate the running of syntax. The Production
Facility is introduced in “Working with the SPSS Production Facility” on p. 24.

Creating Command Syntax

If you decide to use command syntax in your application, you can write it yourself by
referring to theSPSS Syntax Reference Gulildewever, writing syntax can get
cumbersome. You have two other options: pasting the syntax from dialog boxes and
copying syntax from SPSS log or journal files.

Pasting syntax from dialog boxes. SPSS generates command syntax from a dialog box
when you click theraste button. If you are writing code in an SPSS script window,
SPSS will paste the required code and the syntax. To paste syntax and script code:

Start SPSS and from the menus choose:
File
New
Script

Or, open an existing scriptgps) file.

In the script window, choose the desired procedure from the File, Analyze, or Graphs
menu.

17

Programmer’s Introduction to SPSS for Windows

Figure 2-6
Pasting command code into script window

File Edit “iew Scrpt Debug Analwze Graph: Utlities Window Help

|| G| %[5 o] @S] > n|n| == Bl B Bk 2)

Prac: [DESCRIPTIVES_Syntax =l

—

[

Sub DESCRIPTIVES Svntax()

2| ' This procedure was generated automatically using Paste from a dialog
'Procedure: DESCRIPTIVES
'Data File: C:43P32\Employee data.sav

Dim strlommand Ls 3tring

strComnsd striomoand & "DESCRIPTIVES™

striommand = strlommand & vbCrLf

strfommand = strlommand £ " VARIABLEZ=salarvy salbegin™
striommatd striommand & vbCrLf

striommand = strCommand & " F/ITATISTICS=MEAN STDDEV MIN MAX .7
strComnsd striomoand & vhIorLE

obj3pssipp.ExecuteCommands striommand, True

: Descriptives m

Wariahle[z]:
@ Current 5 alary [zalam]
@ Beaginning 5 alary [zalbe

End 3ub

K

@ Employes Code [id]| =
@) [ate af Birth [bdate]

Paszte

4 Educational Level [y
< Employment Catego
< Months since Hire [j
& Previous Experienc
& Minarity Classificatio

[

[T Save standardized values as variables

HiE

Reset

Cancel |
Help |

Optionz. .. |

» Make selections in the dialog box.
» Click Paste to paste the corresponding code statement commands into the script
window.

The pasted code should run without modification in Sax Basic (the SPSS scripting
language) and Visual Basic. In other languages, changes may be necessary.

Note If you open the dialog box from any window other than the script window, the
commands are pasted into a syntax window. Pasting to a script window works with all

18

Chapter 2

of the dialog boxes on the Analyze and Graphs menus and many commands on the File
menu. You can also paste commands from many of the dialog boxes Gratieform
andFile menus, although they will be pasted into a syntax window rather than a script
window. You will have to modify the code accordingly.

Copying syntax from the output log or journal file. SPSS keeps a log of your work while

the program is running. Whether you run procedures by selecting them from the menus
or by submitting commands, the corresponding commands are logged in the journal
file. By default, the journal file is stored in your Windows temporary directory in
spss.jnl. You can also display the commands in the Viewer.

To record commands in the journal:

From the menus choose:

Edit
Options...

Click the General tab.
Click Record syntax in journal.
To display commands in the Viewer:

From the menus choose:

Edit
Options...

Click theViewer tab.

SelectLog and clickShown.

You can use the journal file and output log as sources for building syntax files or simply
view them to reverse-engineer the commands needed for a particular task. For more
information, see th&PSS Base User’s Guidad the online Help.

19
Programmer’s Introduction to SPSS for Windows

Figure 2-7
Command syntax displayed in output log

§% Outputl - SPSS Viewer

= K3
File Edit “iew Insert Format Analyze Graphs Ubliies Window Help
=13 5 B »| Bl=k| @ & 1| «|»| +|-| DO =B
= fE] output =
(8] Log
& (] Descriptives DESCRIPTIVES "
' Ttle =8 VARIAELES=salary salbegin
1 metes /STATISTICS=NELN STDDEV MIN MLY . -
b [Deseriptive Statistios
Descriptives
Descriptive Statistics |
&l Minirmum | Maximum tean Std. Deviation
Current Salary 474 | F15,750 | $135,000 | $34, 41947 $17,075.66
Beginning Salary | 474 | $8,000 | $79,820 | $17,016.08 £7.57064 =
| 3
Double click to edit Log [¥ [SPSS Processor is ready [&

Viewing and Manipulating Results

Whether procedures are run from the menus or with command syntax, the results are
displayed in the Viewer, where end users can browse their results, selectively show and
hide output, and modify their pivot tables, charts, and text output by direct

manipulation. End users scroll the Viewer tree, select the item of interest, and double-

click to activate it. Then they use the graphical interface to make changes to fonts,
colors, and other attributes.

20

Chapter 2

Figure 2-8
Viewing results in Viewer

§% Outputl - SPSS Viewer

File Edit “iew Insert Format Analyze Graphs Utiliies Window Help
= SR 5| B < Bl=k| @ & | «|»| |- @O =|=|B
E‘E Cutpt
=l El Descriptives
Title = 4=
T notes Descriptives
[Descriptive Statistics
Descriptive Statistics
&l Minirmum | Maximum tean Std. Deviation
= | Current Salary 474 | §15,750 | $135,000 | $34,419.57 §17,075.66
Beginning Salary 474 9,000 | $79,980 | $1Y.016.09 5787064
Yalid M (listwise) 474
<] | 2l
[¥ [SPSS Processor is ready &

Figure 2-9
Activated pivot table object displayed in Viewer

= Pivoting Traps1
1 Ouiput! - SPSS Viewer
File Edit “iew [|nzert Piwot Fommat Analyze Graphs Utilitie: Window Help — =
== r Colurnns B
E‘E Output E =
El--{E] Descriptives = z rq
& Title s T =
Hotes Descriptives — —
n F.ru".r.(
-+ Descriptive Statistics
Descriptive Statistics
il Minimum | Maximum Mean Std. Deviation
wp] | Current Salary 474 | §15,750 | §135,000 | 3441957 51707566
Beginning Salary 474 §3,000 [$79.980 | $17,016.09 57 870.64
Valid M {listwise) 474
Formatting Toolbarl =]
L3
o & [] S = Bls|ulgf =

1 items selectad [0 hidden/collapzed) |—|SPSS Proceszar is ready

21

Programmer’s Introduction to SPSS for Windows

Programmers use OLE Automation to view and manipulate output. Most of the Viewer
functionality is available through OLE Automation, including the ability to select and
activate an item of interest and full capabilities for editing pivot tables, interactive
graphics, and text output. You modify output by getting an output document (the OLE
Automation equivalent of the Viewer window), looping through the output items to
find the item of interest, activating the item of interest, and then manipulating its
methods and properties. For example, to rotate a pivot table’s column labels:

' Declare variables.

Dim objSpssApp As ISpssApp

Dim objOutputDoc as ISpssOutputDoc
Dim objOutputltems as ISpssitems

' Start the SPSS application.
Set objSpssApp = CreateObject("SPSS.Application")

' Get an output document that contains a pivot table.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
Set objOutputitems = objOutputDoc.ltems

' Get the output items collection and read the number of items.
Dim objOutputltem as ISpssltem

Dim objPivotTable as PivotTable

Dim intCount as Integer, | As Integer

intCount = objOutputltems.Count

' Loops through the items, testing each to see if it is a pivot table.
Forl=0To intCount - 1
Set objOutputltem = objOutputltems.Getltem (1)
If objOutputitem.SpssType = SpssPivot Then
" Activate the pivot table.
objPivotTable = objOutputltem.ActivateTable
' Rotate the column labels
objPivotTable.RotateColumnLabels=True
" Insert additional editing here.
Exit For
End If
Next

OLE Automation doesn’t support gohg of non-interactive charts§pssChart), so use

interactive graphs if possibléSpssiGraph). If you choose to use non-interactive charts,
you can export them as graphics files in a number of formats. You can also control
some aspects of their appearance by specifying a chart template when the chart is

22
Chapter 2

created. For more information on chart templates, seSH&S Base User’s Guidad
the online Help.

The SPSS scripting facility, which is introduced in the next section, provides
another way to automate output editing.

Working with the SPSS Scripting Facility

SPSS has its own internal scripting facility, shown in Figure 2-10, which uses OLE
Automation to automateutput productiorandediting from within SPSS. Scripts are
written in Sax Basic, a language similar to Visual Basic. Scripting is for programmers
and advanced end users who want to automate tasks from within SPSS, as opposed to
programmers who want to build the SPSS functionality into their own applications.
You work with scripts by opening a script window interactively in SPSS. You write,
edit, and run the script from this window.

Despite some obvious differences between scripting and external programming
(scripts run from within SPSS, so that the user doesn’t have to worry about a compiler
or starting or creating an interface to the application), both use similar techniques,
often for the same goals. In principle, code developed for scripts should also run in
Visual Basic, assuming you make the necessary adjustments.

SPSS includes a number of scripts that are ready to run, along with starter scripts
that you can edit to create your own scripts or programs. The SPSS scripts are in the
SPSS for Windows installation directory i8cripts (see “Edit All Pivot Tables” on p.

86 for an example script). Additional scripts are available on the SPSS Web site at
http://www.spss.com/software/spss/scriptexchange and on the SPSS for Windows
CD-ROM in |Spss Products and Services\SPSS Script eXchange.

For more information on the scripting facility, see Chapter 4 of this document, the
“Scripting Facility” chapter in th&SPSS Base User’s Guidend the SPSS online
tutorials and Help system. To access the tutorials, s&leatial from the Help menu.
Online scripting help can be found by select®gipting Tips from theHelpmenu of a
script window.

23

Programmer’s Introduction to SPSS for Windows

Figure 2-10
Script window

g¥; Clean navigator. shs !EIE

File Edit “iew Scrpt Debug Analyze Graph: Utilitier Window Help

S|d| S| &|w(@] | @) W] »[u|n]-=|er]=(z| B B B=(E] 2]

Proc: ISeIectAndFI emovelutputitem _I

—

Sub ZSelectindRemovelutputItem(intType As Integer, Optional strlabel As variaL:J
|'This procedure iterates through output items and deletes all output
'item=s that match the specified search type and label.

]

'Variable declarations

Dim objlucputboc As IZpssCOutputDoc

Dim objItems Az ISpssItens

Dim objItem Az ISpssItem
'By convention, object wariable nawes begin With Tobi™.
"'Cutputhoe, ISpssltems, ind ISpssltem are the names of SP35 object clas:
'"For example, the first declaration asbove declares an object wvariable n:
"Mobjoutputhoc®™ and assigns it to the Outputboc Chject
'glass. Below, that wvarisble i= set to the designated ocutput docwnent
'in order to access the items in that output docuwrent.

Iim intCount As Integer 'total numnber of output items

Dim intIndex As Integer '"loop counter, corresponds index [(po
Dim intCurrentType As Integer 'type for current item

Dim strCurrentlabel As String '"label for current item

Jet objoutputbhoc = obijSpssipp.Getlhesignatediutputhos

Z3et objltem=s = objOutputloc. Items
'GethesignatedCutputDocs is a wethod that returns the designated ocutput
'document. After objlutputloc is set to the designated ocutput doclwment,
'the Itews method is used to access the items in tchat document.

intCount = okbjltems.Count 'Count method returns the number
'of output items in the designated docwment

obhjoutputboc.Clearfelection 'Clear any existing selections to avi™®
2

Script files and syntax files. Syntax files ¢.sps) are not the same as script filessps).

Syntax files have commands written in the SPSS commargliage that allow you to

run SPSS statistical procedures and data transformations (see Figure 2-5). Scripts are
written in Sax Basic and allow you to run syntax and manipulate SPSS program objects
through OLE Automation.

24
Chapter 2

Working with the SPSS Production Facility

The SPSS Production Réty, shown in Figure 2-11, is launched from the Windows
Start menu and uses syntax to automate production of output from SPSS. Programmers
and advanced end users write, edit, and run the production jobs from this application.
A production job is a collection of syntax files and specifications about how to run the
job.

The SPSS Production Facility is a Visual Basic application that makes extensive use
of SPSS OLE Automation. For more information about the Productioflifyazode,
see “Production Fality Code” on p.101. For more information on how the Production
Facility works, see the “Production Facility” chapter in tABSS Base User’s Guide
and the online Help.

SPSS file types and production. A production job ¢.spp) includes one or more syntax
files (*.sps) and produces one output file §po).

Figure 2-11
Production Facility dialog box

ag 5PSS Production Facility [_ O] x]
File Edit Bun ‘wWindows Help

0| =] 8] =] =]
ag 9P55Jobl !Elm

Creatordowner: Im_l,luserid

Syntax Files:] E
Add.. Bemove Edit..
Comments: Thiz production job runs my suntaxs and putz the output in oMy Documents, j
=
- Fi eI Output Tpe
Tink autput on completion of |2 .
g i l ’7‘? Wigwer € Draft Viewer

oMy Documents Browse... |

"Folder fiar cutput

Export Optionsz... | Ueer Prompts... |

25

Programmer’s Introduction to SPSS for Windows

Working in Distributed Mode

Distributed analysis allows end users to run memory-intensive analyses on a server
computerinstead of a desktop computer. It requires a server version of SPSS. End users
work in distributed mode by selectirgyitch Server from the File menu and then
logging onto a remote server.

Programmers use OLE Automation to creatdient serverApplication object. The
object is created in the same way that the SPSS Application object is created except
that the Application object name is different. This example switches SPSS to
distributed mode, as shown in Figure 2-12:

Dim objCSApp As CS_Application
Set 0bjCSApp = CreateObject("SPSS.CS_Application")

The next step is to log the client server Application object onto a server. This is done
by adding your server name to a server’s collection and then logging on. For example:

‘Add a server.
Dim objServers As ISpssServers
objServers.Add "inet:myserver:3010"

‘Get the server.
Dim objServer As ISpssServer
Set objServer = objServers.First

‘Log the server in to the SPSS Server with an ID and password.
objServer.Connect "myuserid”, "mypasswd"”, 0

26
Chapter 2

Figure 2-12
Server Login dialog box

SPS5 Server Login m

Server Mame | Degcrption | Fort |

Local Computer

2010 Add...

Delete |

Checkmark indicates default Server

Uzer D: Im}luserid

Ixxxxxxxxxx

Pazzword:

I Remember this password

Domain I

0k I Cancel | Help |

The client server Application object has the same methods and properties as the SPSS
application. Once you've created it, you work with it in the same way. The only
difference is where the processing takes place. For a client server application, the
processing takes place on the remote server.

Production mode also supports distributed analysis. You can log onto a remote
server from th@ptionsdialog box, as shown in Figure 2-13, and then run the

production job as usual.

27

Programmer’s Introduction to SPSS for Windows

Figure 2-13
Production Facility options

Editor far Syntax Files: |E:\WINNT\System32\Nutepad.exe Browse... |

— 5PSS Application Maode

[+ Show SPSS when running
¥ |Leave SPSS open at completion of job

" Cloze SPSS at completion af job

—I¥ Bemote Server

Server Mame

Uszer ID: Imyuserid

Fazzword: IN

Darnain Marne: I

ak I Cancel | Help

Chapter

3

OLE Automation Quickstart

This chapter introduces you to using OLE Automation with SPSS. It begins with an
overview of OLE Automation and a code example that builds on the end-user tasks
introduced in Chapter 2. It continues with descriptions of and programming examples
for the SPSS OLE objects. It ends with an introduction to the SPSS object methods
and properties and the SPSS type libraries. If you are already familiar with SPSS for
Windows, this is a good place to start learning about SPSS OLE Automation. Ifyou're
unfamiliar with SPSS for Windows, read Chapter 2 first.

What Is OLE Automation?

If you have worked in Visual Basic or C++, you already know how to use objects that
the program provides, such as command buttons, forms, and fields. OLE Automation
is a technology standard that also allows you to use objects from other applications in
your program. Because SPSS s fully enabled as an OLE Automation server, you can
include SPSS objects as components of your program. Your program can run SPSS
and take advantage of its extensive analytic capabilities.

OLE Automation is supported by a number of programming languages, including
Visual Basic and C++. While the specific techniques for creating the application and
accessing objects vary depending on the programming language, the techniques
described in this chapter for manipulating SPSS objects are basically the same.

28

29

OLE Automation Quickstart

OLE Terminology

OLE Automation provides a standard set of interfaces for applications to provide
objects to other applications, development tools, and macro languages. OLE takes
advantage of, and is part of, the more general Component Object Model (COM). An
object, in programming terminology, is a combination of code and data that can be
treated as a unit; for example, a control, an item in a document, a document, or an
application. An OLE object is also a component (or COM object).

All SPSS objects reside within the SPSS Application object, calle®tte
container. Your program runs SPSS and then accesses the objects that it needs. The
program that exposes the objects—in this case SPSS—is known@&Ehe
Automation server. The program that uses the objects—your program—ithE
Automation client.

Figure 3-1 on p. 32 shows the types of objects, cableg:ct classesthat SPSS
makes available, or exposes, to OLE Automation clients. Each object class has its own
attributes and commands, callpbperties andmethods that define what you can do
with that object.

Figure 3-1 also shows how the objects are related to each other hierarchically. That
is important because many objects can exist only inside other objects. When you want
to access objects lower in the hierarchy, you have to access the objects above them
first, starting with the Application object.

SPSS object classes include the application itself, within which all other objects are
contained; the file information object, which contains information about the SPSS data
file; and objects for the different types of documents and output that SPSS produces.

Using Objects, Properties, and Methods

Like real-world objects, SPSS OLE Automation objects have features and uses. In
programming terminology, the features are referred toraperties, and the uses are
referred to asnethods Each object class has specific properties and methods that
define what you can do with that object.

Object Property Method
. Hardness Write
pencil (real world) Color Erase
TextFont SelectTable
pivot table (SPSS) DataCellwWidths ClearSelection

CaptionText HideFootnotes

30
Chapter 3

Working with objects is a two-step process. First you get a reference to the object. Then
you use its properties and methods to do something to the object.

How Do I Use OLE Automation with SPSS?

When you use SPSS OLE Automation you:
» Decide what you want your application to do with SPSS.

» Write the application code.
Deciding What You Want Your Application to Do

What Tasks Can Be Automated?

You can use OLE Automation to do most of the things you do when running SPSS
interactively, including:

m Open and save SPSS data files and access data file information.

m Perform complex data manipulations and transformations using SPSS command
syntax.

® Run SPSS statistical and graphical procedures to produce pivot tables, charts, and
other statistical output.

® Automate repetitive tasks.

m Customize and manipulate output in the SPSS Viewer, including manipulations
based on values in the output.

m Export output in HTML format for publication on the World Wide Web.
m Export charts as graphic files in a number of formats.
m Set options to customize the SPSS environment.

How Do I Figure Out Which Objects to Use?

The easiest way to figure out what you want to do with SPSS is to use it interactively
with the dialog box user interface. Go through the sequence you want to run in your

31

OLE Automation Quickstart

application. At each step, think about the objects, methods, and properties that are in
use. Table 3-1 shows the correspondence between high-level automation objects and
the SPSS user interface.

Table 3-1

High-level OLE Automation objects and corresponding user interface

Object User Interface

Application (SpssApp) SPSS for Windows application

Options (SpssOptions) Settings in the Options dialog box (Edit menu)
Spss Info (Spssinfo) None

DocumentsiSpssDocuments) All windows open in SPSS

Data Documenti§pssDataDoc) Data Editor window

Syntax Documenti§pssSyntaxDoc) Syntax window

Draft Document iSpssDraftDoc) Draft Viewer window

Output Documenti§pssOutputDoc) Viewer window

Output ItemsISpssitems) All items in the Viewer window

Pivot Table PivotTable) Produced by many items on the Analyze menu
IGraph (SpssiGraph) El:(lt))(rj]’lljecr?ljj by items on the Graphs > Interactive
Text (ISpssRtf) Produced by some items on the Analyze menu
Chart (SpssChart) Produced by items on the Graphs menu

Map Produced by items on the Graphs > Map submenu

Note TheViewer window is where the interactive user sees and manipulates output—
it corresponds to th®utput Document object, even though the names are different.
This is because the window name in the user interface changed after the OLE
Automation interface was defined.

Figure 3-1 shows the complete SPSS object model. “Object Browser and Online Help”
on p. 69 explains how to browse and get Help on SPSS objects, methods, and properties
while you are writing your application.

32
Chapter 3

Figure 3-1
SPSS object model

Application |

4 Documents I,J [ata Document |

Syntax Document

Output Document

Output ltems H Output [kemn I,J Pivot Table |

Print Optiohg Foothotes
Drata Cell:

Labels

SPSS Inf
Layer Label:
Pivot Manager

Dimenzion

i
e
‘ Servers H Server |Graph

Example of Interactive Use and Corresponding OLE Objects

The following steps show a simple sequence of actions that you can do with the SPSS
user interface and the corresponding OLE Automation objects. Detailed code for this
example is in “Writing Application Code” on p. 34.

» Launch SPSS.
User interface:

From the Windows Start menu choose:

Programs
SPSS for Windows
SPSS for Windows

33

OLE Automation Quickstart

OLE Automation:

Dim objSpssApp As ISpssApp

Set objSpssApp = CreateObject("SPSS.Application")

Open a data file. For example, open the employee data file.
User interface:

From the SPSS menus choose:

File
Open
Data...

Selectemployee data.sav.

OLE Automation:

Dim objDataDoc As ISpssDataDoc
Set objDataDoc = objSpssApp.OpenDatadoc ("c:\spss\employee data.sav")

Open a dialog box. For example, open the Frequencies dialog box.
User interface:

From the SPSS menus choose:

Analyze
Descriptive Statistics
Frequencies...

OLE Automation:

objDataDoc.InvokeDialogAndExecuteSyntax ("analyze>descriptive statistics>frequencies",
SpssWindowParent, True)

Save output.

User interface:

Click in the Viewer and from the menus choose:

File
Save

34
Chapter 3

OLE Automation:

Dim objOutputDoc as ISpssOutputDoc
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.SaveAs ("c:\spss\outputl.spo™)

Deciding the Extent of SPSS Integration into Your Application

Your programs can run simultaneously with SPSS on the user’s desktop (and take
advantage of the SPSS user interface), or SPSS can run in the background. The level
of integration is up to you.

If you want to take advantage of the SPSS user interface, write applications that
open dialog boxes using thevokeDialogAndExecuteSyntax method on the Data
Document object and use thsible property on the document objects to make the
SPSS windows visible.

If you want to run SPSS in the background, write applications that submit syntax.
For example, use thexecuteCommands method on the Application object.

Writing Application Code

When you've decided how your application willuse SPSS and the extent of integration

of SPSS into your application, it is time to start writing code ifillg code is typically

done in a development environment that is tailored to the programming language that
you are using. In this section, we will proceed through the same basic steps as in the
example on p. 32, using Visual Basic as the programming language. The code starts
SPSS, opens a data file, runs a procedure, edits and saves the procedure’s output, and
exits SPSS. You may find it useful to refer to the SPSS OLE object hierarchy in Figure
3-1 as you read through the example.

This example demonstrates a number of important OLE Automation techniques,
including how to create the application and how to use properties or methods of higher-
level objects to get at objects lower in the object hierarchy. The example also shows
how to run a statistical procedure using SPSS command syntax. (See Chapter 2 for an
introduction to SPSS command syntax.)

To write the code:
» Include the SPSS type libraries in your project. In Visual Basic, seledeferences from

the Project menu. The SPSS type libraries are listed and described in “SPSS Type
Libraries” on p. 69.

35

OLE Automation Quickstart

» Declare variables. Although not always strictly required, it is a good idea to declare all
variables before using them:

' Application object for SPSS.
Dim objSpssApp As ISpssApp

' Data Document object for the data file.
Dim objDataDoc as ISpssDataDoc

' Output Document object to store the output.
Dim objOutputDoc As ISpssOutputDoc

' String to store the syntax for the procedure.
Dim strCommand As String

By convention, the name of each variable indicates its type. Object variable names
begin withobj, integer variables begin witht, and string variables begin witr.
(These conventions are described more fully in Appendix C.)

For object variables, the name also indicates the object class to which the variable

is assigned. For example, the first declaration above creates an object variable named

objSpssApp and specifies its type aspssApp (belonging to the Application object
class). The variable does not have a value until the application is actually created—all
the statement does is declare that the variable exists.

Note You can declare your object variables as an object class (susphsa#pp or
ISpssOutputDoc) only if your programming language supports a method caltadle
binding, which allows for early binding of variables at compilation time. Most
programs support this method, but if the variable declarations produce an error, declare
the variables a®bject. For example,

Dim objSpssApp As Object
Dim objOutputDoc As Object

» Create the SPSS application. Creating the application means to start SPSS and get a
reference to the Application object so that you can access its properties and methods.
The specific techniques for creating the application vary, depending on what
programming language you are using. In Visual Basic, you can useréheObject
function:

Set 0bjSpssApp = CreateObject("SPSS.Application")

This statement starts SPSS and it stores a reference to the Application object in the
variable.

36

Chapter 3

>

Open a data file. You work with SPSS by getting its objects. §etan object means to
create a reference to the object so that you can use properties and methods to do
something. Each object reference that you get is stored in a variable. You have already
seen how to create (or get) the Application object using Visual Basie'seObject
function. However, most other SPSS objects cannot be created directly. Instead, you
get them by using properties and methods on other, high-level objects. For example,
once you have created the Application object, you can usepgbeDataDoc method to
create a Data Document object and open a data file:

Set objDataDoc = objSpssApp.OpenDatadoc ("c:\spss\employee data.sav")

SPSS requires data before it will run procedures.

Run procedures. Next, analyze the data. For this example, SPSS will run in the
background and we’ll submit syntax. The results of the analysis are placed in an output
document, so we will create that object, too:

Set objOutputDoc = objSpssApp.NewOutputDoc

' Create the procedure command syntax

strCommand = strCommand + "DESCRIPTIVES"

strCommand = strCommand + " VARIABLES=salary salbegin"

strCommand = strCommand + " /STATISTICS=MEAN STDDEV MIN MAX ."

' Run the procedure.
objSpssApp.ExecuteCommands strCommand, True

Modify the output. Now the analysis is complete and the results are in the Output
Document object, ready for modification:

' SPSS can have more than one output document. This gets the one that is
' designated to receive output.
Set objOutputDoc=0bjSpssApp.GetDesignatedOutputDoc

' Clear the current selection.
objOutputDoc.ClearSelection

' Select all notes in the output document.
objOutputDoc.SelectAlINotes

' Delete the selection (all notes).
objOutputDoc.Remove

37

OLE Automation Quickstart

In this step, we modified a collection of output items of the same type. You may want
to edit an individual output item. In general, with SPSS OLE Automation you use
properties or methods on higher-level objects to get at the objects beneath. The Output
Document object is a good example of this. It has a property called that returns

the Output Items Collection:

Set objOutputitems = objOutputDoc.ltems()

And the Output Items Collection has a method cattedtem that returns an individual
output item:

Set objOutputltem = objOutputltems.Getltem(2)

» Save the output. Finally, save the edited output:

objOutputDoc.SaveAs ("c:\myoutputimyoutput.spo")

» Close SPSS. When you have finished using the SPSS Application object, you can close
it by:

objSpssApp.Quit

SPSS Objects, Methods, and Properties

In Figure 3-1, you saw the object classes that SPSS exposes to OLE Automation clients.
If you use SPSS or have read Chapter 2, most of these object types should be familiar
to you and you can probably guess the properties and methods associated with them.

The object model also shows how the objects are related to each other, which is
important because most of the objects exist only inside other objects. You start by
creating the Application object and navigate down the object hierarchy tree. Lower-
level objects, such as data cells and labels, exist only as part of a higher-level object
and cannot be created directly. For example, to change or format column labels in a
pivot table, you need to get all of the objects above and including the Column Labels
object.

Note The online Help for SPSS OLE Automation contains the same diagram, with
links to Help topics for each object, including Help for each object’s methods and
properties. “Object Browser and Online Help” on p. 69 describes how to access the
online Help.

38

Chapter 3

Objects

In the following sections, each high-level object is described and its use is
demonstrated by an example. The examples are written in Visual Basic. There is some
overlap in the code for the examples—this ensures that each can be run independently.
SPSS is made visible so that you can see what the example does. In a real-life
application, you may choose to hide SPSS. The code for these examples is included on
the SPSS for Windows CD-ROM in the Visual Basic project file
ISPSS|Developer\Programs\OLE Quickstartlspssole.vbp. To get the most from the
examples, open the project in Visual Basic and step through the code. Chapter 5
describes additional sample programs supplied with the developer’s tools.

Figure 3-2

Example Visual Basic project user interface (spssole.vpb)

w,. SP55 10.0 for Windows OLE Automation Examples

SPSS Developer's Guide Examples

E ach button corezponds one of the examples in the SPSS5 OLE Automation chapter of the OLE
Guickstart chapter of the SPSS 10.0 Developer's Guide.

“Wwhen the example finizhesz, zelect Exit from the SPS5 File menu to cloze the SPS5S Application.

Start SPSS and run Descriphives I Open the Frequencies dialog box

Get an output item Run an SP55 command suntas file

Change the measurement spstem Get a pivat table object

Get the number of vanables todify a text object

Cazcade Output Yiewer windows | Export a chart

Select items in Output Wiewer b odify an interactive graph

Application Object (ISpssApp)

The Application object is the container object inside of which all other SPSS objects
exist. Itis a user-creatable object, meaning that your program can run SPSS and access

39

OLE Automation Quickstart

its properties directly. Other objects must exist inside higher-level objects. Access them
by applying properties and methods on these higher-level objects. The Application
object has properties to access the SPSS Options object, the File Information object,
and the Documents object.

To get the Application object, declare an object variablessassApp and create the
object:

Dim objSpssApp as ISpssApp
Set objSpssApp = CreateObject("SPSS.Application")

By default, SPSS runs in the background when created through OLE Automation. You
can use the&isible property to display the Data Editor, Viewer, or syntax windows:

objDataDoc.Visible = True

To avoid leaving SPSS running in the background, use&itliemethod to exit SPSS
before closing your program:

objSpssApp.Quit

The SPSS OLE Automation server does not alert you before overwriting files when it
exits.

Figure 3-3 shows a simple example that starts SPSS, opens a data file, and produces a
table of descriptive statistics. Figure 3-4 shows the result of running the example—the
descriptive statistics are displayed in the Viewer.

Figure 3-3
Start SPSS Application object and run Descriptives procedure

‘Example 1: Start SPSS and run Descriptives.
Private Sub cmdExamplel_Click()

'‘Declare object variables.

Dim objSpssApp As ISpssApp

Dim strAppPath As String

Dim strFileName As String

Dim objOutputDoc As ISpssOutputDoc
Dim objDataDoc As ISpssDataDoc
Dim strCommand As String

40

Chapter 3

‘Create the application (start SPSS).
Set objSpssApp = CreateObject("SPSS.Application")

'‘Open a new Output Navigator.
Set objOutputDoc = objSpssApp.NewOutputDoc

'‘Get the SPSS installation directory.
' This example uses an example data file that was installed with SPSS.
strAppPath = objSpssApp.GetSPSSPath

‘Build a path to the data file you want to open.
strFileName = strAppPath & "employee data.sav"

'‘Open the data file.
Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)

‘Display the Data Editor.
objDataDoc.Visible = True

'Run Descriptives procedure using command syntax.

strCommand = strCommand + "DESCRIPTIVES"

strCommand = strCommand + " VARIABLES=salary salbegin"

strCommand = strCommand + " /STATISTICS=MEAN STDDEV MIN MAX ."
objSpssApp.ExecuteCommands strCommand, True

'‘Display Viewer window.
objOutputDoc.Visible = True
End Sub

41

OLE Automation Quickstart

Figure 3-4
Viewer displaying Descriptives results

§% Outputl - SPSS Viewer
File Edit “iew |nsert Fomat Analyze Graphs Utilities window Help

Z|H|SIR el = o O] f & ¢

e[| +[-| DIO] == 2

| »

Yalid M {listwize) 474

Descriptives
Descriptive Statistics
N Minimum | Maximum Mean Std. Deviation
wp | Current Salary 474 | F15750 | $135,000 | $34,419.47 $17,075.66
Beginning Salary 474 §0.000 | $79,980 | $17,016.09 §7,870.64

|—?— |Starting SPSS Processar...

Getting versus Creating the SPSS Application Object

Beginning with SPSS 10.0, multiple instances of the SPSS application can run on a

computer, so your code needs to check to see if the SPSS application is already
running. If the application is running, ugetObject. If the application is not running

useCreateObject. Here’s an example:

Public Function GetSpss() As Application
On Error Resume Next

'Get a reference to existing SPSS.
Set GetSpss = GetObject(Class:="Spss.Application")
Debug.Print Err; Err.Description

‘There will be an error if no SPSS is running or if
"an SPSS version prior to 10.0 is running.
" If there is an error then we will create the SPSS application object.

' For SPSS versions prior to 10.0, CreateObject gets the running instance.

If Err Then
Err.Clear
Set GetSpss = CreateObject("Spss.Application")
End If
End Function

42

Chapter 3

Options Object (ISpssOptions)

The Options object allows you to specify options for the Viewer, charts, pivot tables,
and data and currency formats. In the user interface, these settings are specified in the
Options dialog box, which is accessed from the Edit menu.

To get the Options object, declare an object variablsgssOptions and set it to the
Options property of the Application object:

Dim objSPSSOptions as 1ISpssOptions
Set 0bjSPSSOptions = objSpssApp.Options

Figure 3-5 shows an example that starts SPSS and changes the measurement system
from inches to points. Figure 3-6 shows the Options dialog box with the changed
measurement system.

Figure 3-5
Change measurement system with Options object

‘Example 3: Change the measurement system.
Private Sub cmdExample3_Click()

' Declare variables.

Dim objSpssApp As ISpssApp

Dim objDataDoc As ISpssDataDoc
Dim objSpssOptions As ISpssOptions

‘Create the SPSS application.
Set objSpssApp = CreateObject("SPSS.Application")

'‘Open a new Data Editor.
Set objDataDoc = objSpssApp.NewDataDoc

'‘Display Data Editor.
objDataDoc.Visible = True

'‘Get the Options object.
Set 0bjSpssOptions = objSpssApp.Options

'Set measurement system to points (it is inches by default).
objSpssOptions.MeasurementSystem = 0

'If SPSS is running hidden, changed options settings are

' not saved beyond the current session.

"In this example we ran SPSS visible, so the change is saved.
'‘Be sure to set it back to inches if that is what you use.

End Sub

43

OLE Automation Quickstart

Figure 3-6
SPSS Options dialog box

S |

Piwat Tables I [rata | Currency | Scripts I
General I Wiewer I Diraft Viewer I Dutput Labelz I Charts I Interactive

Sezzion Joumnal

CATEMP zpzz.nl ' Digplay labels " Dizplay names
¥ Record syrtay in journak " Alphabetical &% File
& Append

© Ovenwrite &I Recently used file list IE‘ 3:

— Temporary Directon

Special Workspace Memory Limit

mg : K Bytes IE:‘»TEMF‘

Measurement Syztem —
Iﬁp " — Output Matification
g el ¥ Raise viewer window

W Scroll to new output

[Dpen syntax window at start-up
Sound: ¢ None System beep

“ _ Browse. |
Cutput Type at Start-up——————————————— Sound Browsze...

& Viewer " Draftyiewer

Ok I Cancel | Apply | Help |

Documents Collection Object (ISpssDocuments)

The Documents Collection object provides access to the collection of SPSS
documents, including data, output, and syntax documents. The object has properties
that return the number of open documents of each type and methods to get documents
of each type. This is one of several collection objects that exist primarily to allow you
to get other objects.

To get the Documents Collection object, declare an object variable as
ISpssDocuments and set it to th®ocuments property of the Application object:

Dim objDocuments as ISpssDocuments
Set objDocuments = objSpssApp.Documents

44
Chapter 3

Figure 3-7 shows an example that starts SPSS and uses the Documents Collection to
cascade windows. Figure 3-8 shows the cascaded windows.

Figure 3-7
Cascade Viewer windows with Documents Collection object

‘Example 4: Cascade Viewer windows.
Private Sub cmdExample4_Click()

‘Declare variables.

Dim objSpssApp As ISpssApp

Dim objDocuments As ISpssDocuments
Dim objOutputDoc As ISpssOutputDoc

'‘Create the SPSS application.
Set 0bjSpssApp = CreateObject("SPSS.Application")

'‘Open three Viewer windows.

Set objOutputDoc = objSpssApp.NewOutputDoc
Set objOutputDoc = objSpssApp.NewOutputDoc
Set objOutputDoc = objSpssApp.NewOutputDoc

'‘Get the documents collection.
Set objDocuments = objSpssApp.Documents

‘Loop through the documents collection, cascade the

" Viewer windows, and make them visible.

Dim intCount As Integer

Dim intWindowPos As Integer

intWindowPos = 40

intCount = objDocuments.OutputDocCount

For =0 To intCount - 1
intWindowPos = intWindowPos + 60
Set objOutputDoc = objDocuments.GetOutputDoc(l)
objOutputDoc.Top = intWindowPos
objOutputDoc.Left = intWindowPos
objOutputDoc.Visible = True

Next

End Sub

45

OLE Automation Quickstart

Figure 3-8

Cascaded Viewer windows
% Dutputl - 5PS5 Viewer [_ [O] x|
File Edit “iew Inzert Format Analwze Graphe Utilitiez window Help

D’*lnl,&lr&lrﬁalml ol Bl el il el alal ol i milml sl e

% Dutput2 - SPSS Viewer A= E
File Edit “iew [nset Fomat Analyze Graphs Utlities Window Help
D«|;||fs.|m ral @l -l EmEl el e el e la o il =l =l e
% Dutput3 - SPSS Viewer [_ (O] x| |

C
File Edit “iew |nsert Format Analvze Graphs Utlities Window Help

S|E|5(8 @ B o @l=|b]| @ & 2| «[»] +]-| 0|0 2|D(a]|
----- +{E] Cutput ||

File Information Object (ISpssinfo)

The File Information object provides access to dictionary information on SPSS data
files, including variable names, labels, sequential position of each variable in the file,
print and write formats, missing values, and value labels.

To get the File Information object, declare an object variablksSpssinfo and set it
to theSpssinfo property of the Application object:

Dim objSpssinfo as ISpssinfo
Set objSpssinfo = objSpssApp.Spssinfo

You can also use theetvariableinfo method on the Data Document to retrieve

complete dictionary information with one call. Depending on your needs,

Getvariableinfo can be more efficient than using the SPSS File Information object.
Figure 3-9 shows an example that starts SPSS and gets the number of variables in

from an open data file. First it uses the File Information object and then it uses the Data

Document object.

Figure 3-9
Get number of variables

‘Example 5: Get the number of variables.
Private Sub cmdExample5_Click()

'‘Declare variables
Dim objSpssApp As ISpssApp
Dim objDataDoc As ISpssDataDoc

46

Chapter 3

Dim objSpssinfo As ISpssinfo
Dim strAppPath As String

Dim strFileName As String

Dim intCountFilelnfo As Integer

'‘Declare variants for GetVariableIlnfo method.
Dim numVarsDataDoc As Long

Dim vrtVarNames As Variant

Dim vrtVarLabels As Variant

Dim vrtVarTypes As Variant

Dim vrtVarMsmtLevels As Variant

Dim vrtLabelCounts As Variant

‘Create the SPSS application
Set 0bjSpssApp = CreateObject("SPSS.Application")

'‘Open a data file and make it visible so you can manually check the number of variables.
strAppPath = objSpssApp.GetSPSSPath

strFileName = strAppPath & "employee data.sav"

Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)

objDataDoc.Visible = True

‘There are two ways to get the number of variables:

' from the File Information object and from the

' GetVariablelnfo method on the Data Document object.
' The Data Document object may perform faster.

'Get the File Information object and read the number of variables.
Set objSpssinfo = objSpssApp.Spssinfo
intCountFilelnfo = objSpssinfo.NumVariables

'‘Display the number of variables from ISpssinfo in a message box.

Dim strMsginfo As String

Dim intResponselnfo As Integer

Dim strTitlelnfo As String

strMsglnfo = "The number of variables from ISpssinfo:" & intCountFilelnfo
strTitleInfo = "SPSS OLE Automation”

intResponselnfo = MsgBox(strMsglnfo, vbOKOnly, strTitleInfo)

'Get the Data Document object and use GetVariablelnfo to read the number of variables.
numVarsDataDoc = objDataDoc.GetVariablelnfo(vrtVarNames, vrtVarLabels, vrtVarTypes,
vrtMsmtLevels, vrtLabelCounts)

'‘Display the number of variables from ISpssDataDoc in a message box.
Dim strMsgData As String

a7

OLE Automation Quickstart

Dim intResponseData As Integer

Dim strTitleData As String

strMsgData = "The number of variables from ISpssDataDoc:" & numVarsDataDoc
strTitleData = "SPSS OLE Automation”

intResponseData = MsgBox(strMsgData, vbOKOnly, strTitleData)

End Sub
Figure 3-10
Example application displaying number of variables
employee data_say - 5P5S Data Editor !EIE
File Edit “iew Data Transform Analyze Graphs Utilities Window Help
2|28 B| o[« Dl x|k 5 Ele=| BlEE [T 2
Marne Type YWidth Decimals Label -
1|id Mumeric 4 1] Employee Cod|M:
2|gender atring 1 0 Gender i,
| CEEMEE 5755 o1 pwonoion 3 EHCKCTHT
4leduc Mum _ Educational Le|M:
5|iobeat Murm The number of wanables from [Spesinfo: 10 Ernplayment C{1
B|salary Dollz Current Salary (M
Ok, |
7 |=albegin Dollz Beginning Sala[M:
3 |jobtime MumETe 2z T Months since (M
9| prevexp Mumeric B 0 Previous Exper/ M
10] minority Mumeric 1 0 Minarity Classi|{0 +|
4 | v [} Data Yiew) variable view / | | v
| 4

Data Document Object (ISpssDataDoc)

The Data Document object is the SPSS Data Editor, with or without a working data
file. You need a working data file before you can run any statistical analysis. Use the
OpenDataDoc or NewDataDoc method on the SPSS Application object to create a Data
Document:

Dim objDataDoc as ISpssDataDoc
Set objDataDoc = objSpssApp.OpenDatadoc ("c:\employee data.sav")

48

Chapter 3

You can also copy, paste, save, and print data, and get attributes of the working data
file, including the number of cases and variables, weighting and filter variables,
window size and state, and whether or not toolbars and value labels are displayed.

You can use the Data Document object only to get attributes of data. If you want to
set data attributes—for example, to specify a weighting variable rather than getting the
current setting—use SPSS command syntax.

You do not need to close a Data Document. When you open a new data file or quit
SPSS, the working data file is closed.

Figure 3-11 shows an example that starts SPSS, opens a working data file, and
opens a dialog box for statistical analysis. Figure 3-12 shows the Data Editor and the
dialog box.

Figure 3-11
Open Frequencies dialog box with Data Document object

‘Example 6: Open the Frequencies dialog box.
Private Sub cmdExample6_Click()

‘Declare variables.

Dim objSpssApp As ISpssApp
Dim objDataDoc As ISpssDataDoc
Dim strAppPath As String

Dim strFileName As String

‘Create the SPSS application.
Set 0bjSpssApp = CreateObject("SPSS.Application")

'‘Open a data file.

strAppPath = objSpssApp.GetSPSSPath

strFileName = strAppPath & "employee data.sav"

Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)

'‘Open the Frequencies dialog box.

Dim strPath As String

strPath = "statistics>summarize>frequencies"
objDataDoc.InvokeDialogAndExecuteSyntax strPath, SpssWindowParent, True
‘At this point the end user of your application would request an analysis.

End Sub

Note InvokeDialogAndExecuteSyntax can be used by other SPSS document objects as
long as there is a working data file. TheokeDialogAndExecuteSyntax topic in the

49

OLE Automation Quickstart

online Help for SPSS OLE Automation lists all of the valid menu paths. “Object
Browser and Online Help” on p. 69 describes how to access the online Help.

Figure 3-12
SPSS Data Editor and Frequencies dialog box

employee data_say - 5P55 Data Editor !E E
Fil= Edit “iew Data Transform Analyze Graphs Utiliies \Window Help

S| 5| B] o] B (k]] EHe= SlElE S @

> Educational Level |

Reseat
-@ Erplopraent Categq

Cancel

|‘I s id |1
id gender bdate educ jobeat salary sal =
1 1 [Male 02Ma3/52 15| Manager $57 000 5
2 Sl kA o [Pl b N L | 40 s - | A T T
:
4 % Employes Code [id = aniabiels}) oK.
5 [AL Gender [gender] ——
B 4 Date of Bitth [bdate Lase
7
g

@ Current Salary [zal

E\m @ Beaqinning Salary [z
4 Months since Hire_ILI

O TR SR o OV JU

Help

[sllil

W Display frequency tables

Statiztica. Charts. . Farmat. .

Syntax Document Object (ISpssSyntaxDoc)

The Syntax Document object is an open syntax window for pasting, running, and
saving SPSS command syntax files. For more information about SPSS command
syntax, see Chapter 2.

Use theNewSyntaxDoc or OpenSyntaxDoc method on the SPSS Application object
to open a syntax document:

Dim objSyntaxDoc as ISpssSyntaxDoc
Set objSyntaxDoc = objSpssApp.OpenSyntaxDoc ("c:\weekly.sps")

50

Chapter 3

Use theGetDesignatedSyntaxDoc method on the Application object or the
GetSyntaxDoc method on the Documents object to get a specific open syntax
document. To close a syntax document, usecthee method on the Syntax Document
object.

Figure 3-13 shows an example that starts SPSS and opens and runs a syntax file.
Figure 3-14 shows the syntax window.

Figure 3-13
Run SPSS command syntax file

‘Example 7: Run an SPSS command syntax file.
Private Sub cmdExample7_Click()

‘Declare variables.

Dim objSpssApp As ISpssApp

Dim objSyntaxDoc As ISpssSyntaxDoc
Dim objOutputDoc As ISpssOutputDoc
Dim strAppPath As String

Dim strFileName As String

‘Create the SPSS application.
Set 0bjSpssApp = CreateObject("SPSS.Application")

'‘Open an SPSS syntax file and make it visible.

' This example uses an example syntax file that was installed with SPSS.
strAppPath = objSpssApp.GetSPSSPath

strFileName = strAppPath & "Descriptive Statistics.sps"

Set objSyntaxDoc = objSpssApp.OpenSyntaxDoc(strFileName)
objSyntaxDoc.Visible = True

'Run the syntax in the file.
objSyntaxDoc.Run

‘Normally you would close the syntax file with the following command.
‘ We left it open so you can see it.
objSyntaxDoc.Close

‘Note: This syntax file was designed for the SPSS Production Facility, so
" it doesn't do anything in SPSS. It was used for this example
" because it is shipped with the SPSS product.

End Sub

51

OLE Automation Quickstart

Figure 3-14
Syntax window

g Descnplive Statistics.sps - 5P55 Syntax Editor
Fil= Edit “iew Analyze Graphs Utilitiez Bun ‘wWindow Help

=S| = | D=k & »| 2|z |

F Displays descriptive statistics for any file. -

* This needs to be run from the Production Facility
* with the job "Descriptive statistics.spp” - the

* data set name is defined by the user when running
* that .spp file.

*this set command is used to make sure that tables get
* zized correctly - it uses both data and labels to

* determine the size of a column.

SET TFIT BOTH.

* et the data file that the user specifies when

* running production mode. —
Get File @MYFILET .

Descriptives Yar=all. =]

|T|SF'SS Processor isr 2

Output Document Object (ISpssOutputDoc)

The Output Document object is an open Viewer document. This object contains the
Output Items Collection and a Print Options object. Use the Output Items Collection
object to manipulate output items at the outline level. You can cut, remove, promote,
or demote selected output items. You can select all output items of a particular type,
such as charts or notes tables, and export all or selected charts in any of a number of
graphics formats (to access individual output items, you have to first access the Output
Items Collection, described in the next section).

Use theNewOutputDoc or OpenOutputDoc method on the SPSS Application object
to open an output document:

Dim objOutputDoc as ISpssOutputDoc
Set objOutputDoc = objSpssApp.OpenOutputDoc(“c:\myoutput.spo”)

52
Chapter 3

Use theGetDesignatedOutputDoc method on the SPSS Application object or the
GetOutputDoc method on the Documents object to get an output document that is
already open:

Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc

To close an output document, use ttiese method on the Output Document object.
Figure 3-15 shows a Visual Basic example that starts SPSS, opens a data file,
creates output items, and selects and removes all items that are notes.

Figure 3-15
Select and remove items from output

‘Example 12: Select items in the Viewer window.
' This example selects and removes notes.
Private Sub cmdExample12_Click()

‘Declare variables.

Dim objSpssApp As ISpssApp

Dim objDataDoc As ISpssDataDoc
Dim objOutputDoc As ISpssOutputDoc

'‘Create SPSS Application.
Set 0bjSpssApp = CreateObject("SPSS.Application")

'‘Open a data file and create some output.

strAppPath = objSpssApp.GetSPSSPath

strFileName = strAppPath & "employee data.sav"

Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)

strCommand = strCommand + "DESCRIPTIVES"

strCommand = strCommand + " VARIABLES=salary salbegin"

strCommand = strCommand + " /STATISTICS=MEAN STDDEV MIN MAX ."
objSpssApp.ExecuteCommands strCommand, True

‘Get the Viewer window and make it visible.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

'Select all notes in the output document and remove them.
objOutputDoc.ClearSelection
objOutputDoc.SelectAlINotes

objOutputDoc.Remove

End Sub

53

OLE Automation Quickstart

Figure 3-16
Outline with items selected prior to removal

i% Outputl - 5P55 Viewer

File Edit “iew |nzert Fomat Analvze

zlalsln) | =) | o

........ Title

.....p Motes

........ @ Descriptive Statistics
= E' Frequencies

........ Title

........ MNotes
-------- L Statistics

= {E] Freauency Table
e Title
@ Gender
@ Employment Cateaary
= {E] Bar Chart
! Title
: [,-lﬂ Gender
o (] Employment catedory
=] Interactive Graph
[Title
b [y Mates
- Hiztogram

3 itemg gelected [3 hidden/collapzed)

Output Items Collection (ISpssltems)

The Output Items Collection contains the items in an open output document. This
object has a single properiyount, and single methodsetitem, that you use to get at

the individual output items beneath it. For example, Figure 3-19 on p. 57 shows how
to loop through the Items Collection and get the first pivot table of a given type.

54

Chapter 3

To get the Output Items object, declare an object variabigmsitems and set it to
theltems property of the Output Document object:

Dim objOutputltems As ISpssitems
Set objOutputltems = objOutputDoc.ltems()

Note that the collection is zero-based index, so the firstitem is item zero, the second is
item one, and so on. (Iltem zero is the root item lab&B&S Outpuhat appears even
in an empty output document and cannot be deleted.)

Figure 3-17 shows an example that starts SPSS, opens a data file, creates output
items, and gets an arbitrary item. Figure 3-18 shows the result of running the
example—the arbitrary item is selected in the Viewer.

Figure 3-17
Get output item from Output Items Collection

‘Example 2: Get an output item from the output items collection.
Private Sub cmdExample2_Click()

‘Declare variables.

Dim objSpssApp As ISpssApp

Dim strAppPath, strFileName As String
Dim objDaaDoc As ISpssDataDoc

Dim objOutputDoc As ISpssOutputDoc
Dim objOutputltems As ISpssitems
Dim objOutputltem As ISpssltem

‘Create SPSS Application.

Set objSpssApp = CreateObject("SPSS.Application")

'‘Open a data file and create some output.

strAppPath = objSpssApp.GetSPSSPath

strFileName = strAppPath & "employee data.sav"

Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)

strCommand = strCommand + "DESCRIPTIVES"

strCommand = strCommand + " VARIABLES=salary salbegin"

strCommand = strCommand + " /STATISTICS=MEAN STDDEV MIN MAX ."
objSpssApp.ExecuteCommands strCommand, True

‘Get the Viewer window and make it visible.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

55

'‘Get the Output Items collection.
Set objOutputitems = objOutputDoc.ltems()

'Get the third output item.

‘(Items are numbered starting at 0, thus item 2 is the third item)

Set objOutputitem = objOutputltems.Getltem(2)

'Select the item we just got.
objOutputltem.Selected = True

End Sub

Figure 3-18
Viewer displays selected output item

§% Outputl - SPSS Viewer
File Edit “iew Inzert Fomat Analwze Graphe Utiliie: Window Help

OLE Automation Quickstart

Z|E|SIR bl B | Ok 9 & ¢

+lo] +|-] o] =[=la

4]

-{E] output

= E Descriptives

Descriptive Statistic:

|

*Descriptives
Descriptive Statistics
il wlinirmurm | waximum lean 5td. Deviation
Current Salary 474 | $15750 | $135,000 | §34 41987 §17,075.66
Beginning Salary 474 $9,000 | §759,980 | §17,016.09 §7,6870.64

Yalid M (listwise) 474

Processor area

i

|—?_|Starting SPS55 Processor...

Output Item Object (ISpssltem)

The Output Item object is any item contained in an open Viewer window, including

pivot tables, charts, and text output. Use this object to select, remove, activate, and
modify output items.
To get an arbitrary output item, first get the Output Items Collection and then use
the Getitem method. For example, as shown in Figure 3-17, to get the third item in the
(zero-based) collection:

56

Chapter 3

Dim objOutputltem As ISpssltem

Set objOutputltem = objOutputitems.Getltem(2)

More often you’ll want to loop through the Items Collection to get items that meet
specified criteria. For example, use thessType property on the Output Item object to
get the item type and then test if the item is of the desired type:

Dim objOutputltem As ISspssitem

Dim intltemType As Integer

intltemType = objOutputltem.SPSSType

If intitemType = SPSSINote Then

The examples shown in Figure 3-19, Figure 3-21, Figure 3-23, and Figure 3-25 all use
this technique to access different types of items.

Pivot Table Object (PivotTable)

The Pivot Table object is an activated pivot table. You can use automation to do most of
the things you can do in the Pivot Table Editor. There are two ways you can use this
object:

m Select groups of cells (results or labels) or other elements (such as footnotes) and
apply properties and methods that modify the entire selection. For example, you
can use th&oregroundColor property to change the foreground color for selected
cells.

m Getan individual element and modify it using properties and methods that apply to
the sub-objects contained in the pivot table. For example, with the Data Cells
object, you can use theoregroundColorAt property to set the foreground color for
the current data cell. A number of sub-objects are contained within the Pivot Table
object, including Footnotes, Data Cells, Row and Column Labels, Layer Labels,
and the Pivot Manager.

To get a Pivot Table object, loop through the Items Collection as shown in Figure 3-19.
The SPSS Base system also includes a number of sample scripts that demonstrate
techniques for manipulating pivot tables. For a brief introduction to scripting, see
“Working with the SPSS Scripting Facility” on p. 22 in Chapter 2. For more
information about scripting, see Chapter 4 in this document, the “ScriptinigtiFac
chapter in theSPSS Base User’s Guidmd the online Help.

Figure 3-19 shows an example that starts SPSS, opens a data file, creates output
items, and gets a pivot table. Figure 3-20 shows the result of running the example—the
pivot table is activated in the Viewer.

57

OLE Automation Quickstart

Figure 3-19
Get and activate pivot table object

‘Example 8: Get a pivot table object.
Private Sub cmdExample8_Click()

‘Declare variables.

Dim objOutputDoc As ISpssOutputDoc
Dim objOutputitems As ISpssitems
Dim objOutputltem As ISpssltem

Dim objPivotTable As PivotTable

Dim strAppPath As String

Dim strFileName As String

Dim strCommand As String

'Start SPSS.
Set objSpssApp = CreateObject("SPSS.Application")

'‘Open a data file and create some output so we can get a pivot table.
strAppPath = objSpssApp.GetSPSSPath

strFileName = strAppPath & "employee data.sav"

Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)
strCommand = strCommand + "REGRESSION"

strCommand = strCommand + " /MISSING LISTWISE"
strCommand = strCommand + " /STATISTICS COEFF OUTS R ANOVA"
strCommand = strCommand + " /CRITERIA=PIN(.05) POUT(.10)"
strCommand = strCommand + " /NOORIGIN"

strCommand = strCommand + " /DEPENDENT salary"
strCommand = strCommand +" /METHOD=ENTER salbegin ."
objSpssApp.ExecuteCommands strCommand, True

‘Get the Viewer window and make it visible.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

'‘Get Output Items collection

Set objOutputitems = objOutputDoc.ltems()

Dim intltemCount As Integer ‘Number of output items.
Dim intltemType As Integer 'Output item type.

Dim strLabel As String'Output item label.

58

Chapter 3

‘Loop through the output items, checking type and label.

"We'll look for ANOVA pivot tables.

"If type and label match, activate the item.

intitemCount = objOutputltems.Count() 'Get the numbe

For Index = 0 To intltemCount - 1
Set objOutputitem = objOutputlitems.Getltem(Index)
intitemType = objOutputltem.SPSSType() 'Get the ite
strLabel = objOutputitem.Label '‘Get the ite
If intitemType = SPSSPivot And strLabel = "ANOVA" Th

Set objPivotTable = objOutputitem.Activate()

r of items.

m type.
m label.
en

Exit For
End If
Next Index
End Sub
Figure 3-20
Viewer displays activated pivot table
% Outputl - SPSS Viewer [_ (O] x|
File Edit “iew |nzert Piwot Fomat Analwze Graphs Utilitie: ‘wWindow Help
=
ANOWAZ
hodel Sum of Squares il Mean Sgquare F
@ Wariables Entered -
@ Model Summary 1 Regression | 106831048750.124 1| 106831048750.124 | 1622.11
- ANOVA, 5 Residual 31085446686.216 472 65858997217
L Coeficierts Total 137T916495436.340 | 473 |
—
1. Predictors: (Constant), Bedinning Salary i Pivoting Traysi [x]
2. Dependent Variable: Current Salary =
—
£ Columns g
Formatting Toolbarl ol g =
= =] [}
o & | a2) 1) S B
on oo
1 items selected [0 hidden/collapsed) |— |Starting SPSS Processor..

59

OLE Automation Quickstart

Chart Object (ISpssChart)

The Chart object is a chart contained in the Output Document object. Use this object to
export a single chart. To export a number of charts in the same format, use the
ExportChart or ExportDocument method of the Output Document object.

To get a Chart object, declare an object variablesassChart and set it to the
ActivateChart method of the Output Item object. You need to deactivate the item when
you have finished manipulating the Chart object.

Figure 3-21 shows an example that starts SPSS, opens a data file, and creates and
exports a chart.

Figure 3-21
Export chart

‘Example 9: Export a chart
Private Sub cmdExample9_Click()

‘Declare variables.

Dim objOutputDoc As ISpssOutputDoc
Dim objOutputltems As ISpssitems
Dim objOutputltem As ISpssltem

Dim objSPSSChart As ISpssChart
Dim strCommand As String

'Start SPSS.
Set objSpssApp = CreateObject("SPSS.Application")

'‘Open a data file and create some output so we can export it.
strAppPath = objSpssApp.GetSPSSPath

strFileName = strAppPath & "employee data.sav"

Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)
strCommand = strCommand + "GRAPH"

strCommand = strCommand + " /BAR(SIMPLE)=COUNT BY gender"
strCommand = strCommand + " /MISSING=REPORT."
objSpssApp.ExecuteCommands strCommand, True

‘Get the Viewer window and make it visible.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

60

Chapter 3

'‘Get Output Items collection

Set objOutputitems = objOutputDoc.ltems()

Dim intltemCount As Integer ‘Number of output items.
Dim intltemType As Integer '‘Output item type.

‘Loop through the output items, checking type.
' We'll look for charts.
' If type matches, activate the item and export it as a JPEG file.
intitemCount = objOutputltems.Count()
For Index = 0 To intltemCount - 1
Set objOutputitem = objOutputlitems.Getltem(Index)
intitemType = objOutputlitem.SPSSType()
If intitemType = SPSSChart Then
Set 0bjSPSSChart = objOutputitem.ActivateChart
objSPSSChart.ExportChart "c:\temp\mychart.jpg", "JPEG File"
Exit For
End If
Next Index

‘Tip: Check c:\temp for the file "mychart.jpg" to confirm the example worked.
" If you want to look at the file and have an application that is associated with jpg files,
' double-click it (e.g., Internet Explorer).

End Sub

Note It is not possible to modify charts using OLE Automation. To control the
appearance of charts produced by automation, specify a chart template when creating
the chart. For more information about chart templates, se8RISS Base User’s Guide

and the online Help.

61

OLE Automation Quickstart

Figure 3-22
Microsoft Internet Explorer displays exported chart

3 CATEMPAmychart. jpg - Microsoft Internet Explorer

J Fil= Edit “iew Go Favoriter Help ‘

Jﬁ,ﬂ,@ﬁ‘@@

Back Farward Stop Refresh Home Search Favorites
| Addiess [[BY CATEMPAmychar jpg =] [Links

270

260

250 4

240 4

220 1

220

Count

210 |

Female Male

Sender -
| »

«
li ’_ ’_ ’_ |B by Computer A

Graph Object (ISpssiGraph)

The Graph objecti$pssiGraph) is an interactive graph contained in the Output Item
object (Spssitem). Use this object to retrieve and modify other objects associated with
the graph and to export an interactive graph.

To get a Graph object, declare an object variablspssiGraph and set it to the
GetlGraphOleObject method of the Output Item object.

62
Chapter 3

Figure 3-23 shows an example that starts SPSS, opens a data file, creates an
interactive graph, activates it, and turns on the value label display. Figure 3-24 shows
the result of running the example—the interactive graph is activated and displays value
labels.

Figure 3-23
Edit interactive graph

‘Example 11: Modify an interactive graph
Private Sub cmdExamplel1_Click()

‘Declare variables.

Dim objSpssApp As ISpssApp

Dim objDataDoc As ISpssDataDoc

Dim objOutputDoc As ISpssOutputDoc

Dim objOutputltems As ISpssitems

Dim objOutputltem As ISpssltem

Dim objSpssiGraph As ISpssiGraph

Dim objBarElement As ISpssiGraphBarElement
Dim strCommand As String

'Start SPSS.
Set objSpssApp = CreateObject("SPSS.Application")

'‘Open a data file and create some output so we can get an interactive graph object.
strAppPath = objSpssApp.GetSPSSPath

strFileName = strAppPath & "employee data.sav"

Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)

strCommand = strCommand + "IGRAPH"

strCommand = strCommand +" /VIEWNAME='Bar Chart™

strCommand = strCommand +" /X1 = VAR(jobcat) TYPE = CATEGORICAL /Y = $count"
strCommand = strCommand + " /COORDINATE = VERTICAL"

strCommand = strCommand + " /X1LENGTH=3.0 /YLENGTH=3.0 /X2LENGTH=3.0
/CHARTLOOK="NONE"

strCommand = strCommand + " /CATORDER VAR(jobcat) (ASCENDING VALUES
OMITEMPTY)"

strCommand = strCommand +" /BAR KEY=ON SHAPE = RECTANGLE BASELINE =
AUTO."

objSpssApp.ExecuteCommands strCommand, True

'‘Get the Viewer window and make it visible so we can see the graph after we change it.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

63

OLE Automation Quickstart

'‘Get Output Items collection
Set objOutputitems = objOutputDoc.ltems()

Dim intitemCount As Integer ‘Number of output items.
Dim intltemType As Integer '‘Output item type.
'Dim strTitle As String "The title text we want to find and change.

‘Loop through the output items, checking type.
"We'll look for interactive graphs.
" If type matches, activate the item, turn on count labels and deactivate it.
intitemCount = objOutputltems.Count
For Index = 0 To intltemCount - 1
Set objOutputitem = objOutputlitems.Getltem(Index)
intitemType = objOutputltem.SPSSType
If intitemType = SPSSIGraph Then
Set objSpssIGraph = objOutputitem.Activate()
Set objBarElement = objSpssiGraph.GetElement(SpssiGraphBar)
objBarElement.GetCountLabel.Show = True
objSpsslGraph.Redraw 'Always redraw to see your change.
objOutputltem.Deactivate
Exit For
End If
Next

End Sub

64
Chapter 3

Figure 3-24
Viewer displays edited interactive graph

% Dutputl - SPSS Viewer [_ O] x]

File Edit Wiew Inzert Farmat Analyze Graphs Utiliies Window Help

10160 %) 5] | Blelo) | 8] -] el+] -] 0] sl

=] outour Interactive Graph —
B El Interactive Graph

[Title

| Motes

&) Bar Chart

Bars show counts

Count

Clarical Custadial hanager

Employment Category

-
1| | »

|—?_|Starting SPSS Processor... | A

Text Object (ISpssRTF)

The Text object is an RTF text editor contained in the Output Document object. You can
access and manipulate SPSS text output, including warnings, logs, and titles, using this
object.

To get a Text object, declare an object variablésassRtf and set it to the return
value of theActivateText method of the Output Item object. You need to deactivate the
item when you are finished manipulating the text object.

Figure 3-25 shows an example that starts SPSS, opens a data file, creates output

items, gets a text object, and changes the text. Figure 3-26 shows the modified text in
the Viewer.

65

OLE Automation Quickstart

Figure 3-25
Edit Text object

‘Example 10: Modify a text object.
Private Sub cmdExample10_Click()

‘Declare variables.

Dim objSpssApp As ISpssApp

Dim objDataDoc As ISpssDataDoc
Dim objOutputDoc As ISpssOutputDoc
Dim objOutputltems As ISpssitems
Dim objOutputltem As ISpssltem

Dim objSpssText As ISpssrtf

Dim strCommand As String

'Start SPSS.
Set objSpssApp = CreateObject("SPSS.Application")

'‘Open a data file and create some output so we can get a text object.

strAppPath = objSpssApp.GetSPSSPath

strFileName = strAppPath & "employee data.sav"

Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)
strCommand = strCommand + "CROSSTABS"

strCommand = strCommand + " /TABLES=gender BY jobcat"
strCommand = strCommand + " /FORMAT= AVALUE TABLES"
strCommand = strCommand + " /CELLS= COUNT ."
objSpssApp.ExecuteCommands strCommand, True

'‘Get the Viewer window and make it visible so we can see the title after we change it.

Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

'‘Get Output Items collection
Set objOutputitems = objOutputDoc.Iltems()

Dim intitemCount As Integer ‘Number of output items.
Dim intltemType As Integer ‘Output item type.
Dim stritemTitle As String 'The title text we want to find and change.

‘Loop through the output items, checking type and text.
"We'll look for titles with the text "Crosstabs" (titles are text objects).

" If type and text match, activate the item, change the text and deactivate it.

intitemCount = objOutputltems.Count
For Index = 0 To intltemCount - 1
Set objOutputitem = objOutputlitems.Getltem(Index)

66
Chapter 3

intltemType = objOutputltem.SPSSType
If intitemType = SPSSTitle Then
Set objSpssText = objOutputitem.Activate Text
stritemTitle = objSpssText. Text
If stritemTitle = "Crosstabs" Then
objSpssText.Text = "My new title for crosstabs"
objOutputltem.Deactivate
Exit For
End If
End If
Next

End Sub

Figure 3-26
Viewer displays the edited title text

§% Outputl - SPSS Viewer

M= E3
File Edit “iew Insert Format Analyze Graphs Ubliies Window Help
S|d|3R B B o] Bl=|k| @ & || <[]+ -] O 25|
(=& ot =
Elel Crosstabs
=My new title for crosstabs .
@ Case Processing

......... @ Gender * Employ

Case Processing Summary

Cases

Yalid Missing Total
M Percent M Percent il FPercent

Gender* Employment
Categary 474 | 100.0% 0 0% 474 [100.0%

-
1 v 4] | >

|—?_ |Starting SPSS Processar...)

Properties and Methods

Most SPSS objects have properties that you can use to query the attributes of an object
and methods to manipulate the object. Table 3-2 on p. 68 provides an overview of
available SPSS methods and properties for high-level SPSS objects.

67

OLE Automation Quickstart

Properties. Properties set or return attributes of objects. Some properties return another
object, as discussed above; other properties are attributes, such as color or width. For
example, objects of the Pivot Table class have a property caliptbnText. To set the
caption at the bottom of a pivot tableb{PivotTable) to My Resultstype the following
statement:

objPivotTable.CaptionText = "My Results"

When a property appears on the left side of an equals sign (as in the above example),
you aresetting its value. When a property appears on the right side, yogetting,

or reading, its value. For example, to get the caption of the pivot table and save it in a
variable:

strFontName = objPivotTable.CaptionText

Methods. Methods perform actions on objects, such as selecting all of the elements in
atable:

objPivotTable.SelectTable
or removing a selection:
objPivotTable.ClearSelection

Like properties, some methods return another object. For example, the
GetDesignatedOutputDoc method returns the designated output document:

Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc

Table 3-2

Example properties and methods for high-level OLE Automation objects

Object Properties Methods
ExecuteCommands
Documents GetDesignatedOutputDoc
ISpssApp Options NewDataDoc
Spssinfo OpenDataDoc
Quit
DisplayCommands
ISpssOptions OutputBeep none
WarningsVisible
ISpssinfo NumVariables GetSelectedVariables
p VarType
ISpssDocuments | DataDocCount GetDataDoc
Copy
Modified GetNumberOfCases
ISpssDataDoc PromptToSave GetVariables
Visible SelectCells
SaveAs
Designated glr?r?teDoc
ISpssSyntaxDoc | PromptToSave RUN
Text SaveAs
) . ClearSelection
PrintOptions ExportCharts
ISpssOutputDoc | SplitterPosition | Titl
Visible nsertTitle
SelectAllMaps
Height Close
ISpssDraftDoc Width GetDocumentPath
WindowState PrintRange
ISpssltems Count Getltem
BackgroundColor C_reateChart
. HideFootnotes
PivotTable TableLook SelectCanti
TextStyle electCaption
ShowAll
CoordinateSystem DeleteTitle
ISpssIGraph Elements GetElement
Title Redraw
ISpssRtf none RtfText
ISpssChart none ExportChart
Map none none

69
OLE Automation Quickstart

Note Table 3-2 doesn'tlist all of the available properties and methods. The online Help
for SPSS OLE Automation documents all properties and methods of SPSS objects.
“Object Browser and Online Help” below describes how to access the online Help.

SPSS Type Libraries

The complete set of object classes (or object types) and the properties and methods
associated with each are described in the SPSS type librarigpeAibrary is a file

that contains OLE Automation standard descriptions of exposed objects, along with the
properties and methods associated with each.

SPSS provides four type libraries:

SPSS type library (spsswin.tlb). Includes the Application object, Options object, File
Information object, the complete Documents Collection, the Items Collection, the
Chart object, and Maps.

PivotTable type library (spsspvt.tib). Includes the Pivot Table object and all of the
objects that reside within it.

Graphics Editor OLE control (spssgctl.tib). Includes the Interactive Graphs object and all
of the objects that reside within it.

RTF type library (spssrtf.tib). Includes the RTF text object.

SPSS type libraries are automatically registered in the Windows registration database
the first time you run SPSS after you have properly installed it.

Some programming environments, such as Visual Basic, require you to explicitly
add the type libraries to the development environment before you can access them. If
you must do so, make sure that you add all four type libraries. See your programming
language’s documentation for specific instructions.

Object Browser and Online Help

Most development environments, including Visual Basic, C++, and the SPSS Script
Editor, provide an object browser facility that allows you to view and use the type
libraries. You can browse all SPSS objects, their properties and methods, and the
predefined constants. You can also paste the syntax of selected properties and methods

70
Chapter 3

directly into your code, and you can access context-sensitive online Help and code
examples.

Figure 3-27
SPSS Script Editor object browser

OLE Automation Members [x| |

Back | |EurrentDirech:ur_l,l Paste |
Librany Property: CurrentDirecton
I['é"" Libraries] ﬂ Walue: Shring
Sl Dispatch ID: 0x00000014 Close |
IDbiSpssApp. ﬂ _
Methods/Propertiez U slig
- 2 | Gets/zetz cument directomy for SPSS.
Alerts a

Documents
ExecuteCommands
Executelnclude
GetDesignatedDraftD o
GetDesignatedOutputDoc
GetDesignatedSyntaxDoc
Get5PS5Path

Interrupt

|=Bugy j

To view objects and get Help in most object browsers:
» Select the type library that contains the objects of interest.
» Select an object class to display the methods and properties for that class.

» Selectindividual properties and methods to paste them into your code, oiHdress
access context-sensitive Help.

To access OLE Automation object tree Help from the SPSS product:

» Launch SPSS. From the Windows Start menu choose:

Programs
SPSS for Windows
SPSS for Windows

71

OLE Automation Quickstart

Access a script window. For example, from the menus choose:

File
New
Script

Open the Help. From the script window menus choose:

Help
Objects

Click the object of interest on the tree to access Help, example code, and a complete
list of that object’s properties and methods.

Chapter

Scripting Quickstart

This chapter introduces you to using the SPSS scripting facility. The chapter begins
with an overview of scripting features and concludes with step-by-step examples. If
you are already familiar with SPSS for Windows and SPSS OLE Automation, this is
a good place to start learning about writing a script. If you're unfiamwith SPSS

for Windows, read Chapter 2 first. If you're unfamiliar with SPSS OLE Automation,
read Chapter 3 first.

What Is the SPSS Scripting Facility?

Scripts work by manipulating SPSS OLE Automation objects by using their
properties and methods. Scripts are created and edited in the SPSS script window. The
SPSS scripting facility is introduced on p. 22 in Chapter 2.

Scripting versus OLE Automation Applications

Scripting uses the same SPSS OLE Automation object, properties, and methods that
are described in Chapter 3. To write scripts, you first need to familiarize yourself with
the object model hierarchy shown in Figure 3-1.

The main distinction between writing a script and writing an OLE Automation
application is that the script runs within the SPSS application—it isn’'t a separate
application. The code that you write for a script can be essentially the same as the code
you write for an OLE Automation application except that when you write a script, you
do not need to declare the SPSS Application object (because SPSS is already
running).

72

73
Scripting Quickstart

Write scripts when you want to control SPSS from within an SPSS session—for
example, when you want to:

m Customize SPSS output.
® Add a feature to SPSS.

Write OLE Automation applications when you want to control SPSS from another
application—for example, when you want to:

m Add SPSS functionality to another application.
m Write an application with a completely alternate user interface to SPSS.

Script Window Features

The script window is a fully featured programming environment that uses the Sax
Basic language and includes a dialog box editor, object browser, debugging features,
and context-sensitive Help. (Figure 2-10 in Chapter 2 shows the script window.)

Pasting syntax. Many SPSS analysis and data management dialog boxes include a Paste
button that generates command syntax for the current procedure. If you open a dialog
box from a script window, SPSS will paste the command syntax and the code required
to run it. See “Creating Command Syntax” on p. 16 in Chapter 2 for step-by-step
instructions.

Command syntax. TheSCRIPT syntax command can be used to pass a parameter from

a syntax file to a script. For example, you can pass a filename. See the online Help topic
ScriptParameter Method for details and an example (choasep on the script window
menu, then choosebject, and then look at the Index). “Writing an Original Script” on

p. 81 includes an example use of HeRIPT command.

Customized descriptions. You can add a description to your script, which is displayed

in the Run Script and Use Starter Script dialog boxes. Add a comment on the first line
of the script that starts wittBegin Description, followed by your comments (one or

more lines), followed byEnd Description.

Procedure display. As you move the cursor, the name of the current procedure is
displayed at the top of the window.

Color cues. Terms colored blue are reserved words in Sax Basic (for exasupleEnd
Sub, andDim). Objects, properties, and methods are displayed in magenta. Comments
are displayed in green.

74

Chapter 4

Dialog boxes. The SPSS scripting facilityupports custom dialog boxes. Use these
when you want to solicit input from a user about how the script should run or when you
want to customize SPSS behavior and hide that fact from the user. The script window
has a UserDialog Editor that provides a way to define the dialog box. Access the dialog
editor from the Script menu.

Debugging. The Debug menu allows you to step through your code, executing one line
or subroutine at a time and viewing the result. You can also insert a break point in the
script to pause the execution at the line that contains the break point.

Object browser and Help. Press F2 to display the object browser, which displays SPSS
objects, properties, and methods and affords access to the online Help. The object
browser also allows you to paste the correct code for selected properties and methods
directly into your script.

Types of Scripts

SPSS includes many sample scripts that are installed with the product iBctfigs
directory. In addition to ordinary sample scripts, which you can run to get the results
you want, scripts for special purposes include the following:

Starter. Starter scripts supply code for one or more common sequences of tasks. They
include comments with hints on how to customize the script to your particular needs.
Starter scripts are installed in the SPSS installation directotgdripts\Starter. SPSS
automatically prompts you to open a starter script when you create a new script
window (see “Modifying a Starter Script” on p. 76 for an example). Of course, you can
use any script as a starter script, although it probably won’t be as easy to customize.
Simply open the script, customize it, and save it with a different filename.

Global. A global procedures scriptis a library of procedures that can be called by other
scripts. When you open a script window, the global file is loaded automatically and its
procedures are available to your script. To view the global script, click the tab labeled
2. The tab is located on the left side of the script window. You can add your own
frequently used procedures to the default global figzfjptsiglobal.sbs), or you can
specify a different global file in the Options dialog box (on the Edit menu).

Autoscript. An autoscript runs automatically when it is triggered by the creation of a
specific type of output from a specific procedure. For example, there is an autoscript
that runs whenever a Correlations table is produced by the Bivariate Correlations
procedure. The script automatically removes the upper diagonal of the table as soon as

75
Scripting Quickstart

it appears in the Viewer. You can add your own autoscripts to the default autoscript file
(\Scripts\Autoscript.sbs), or you can specify a different autoscript file in the Options
dialog box (on the Edit menu). For an example, see “Adding an Autoscript” on p. 78.

How Do | Use Scripting?
When using the SPSS Scripting Faciliyypu:
» Decide what you want your script to do.
» Write the script code.

» Run the script.

Deciding What You Want Your Script to Do

You can use scripting to do most of the things you can do with OLE Automation, and
that includes most of the things you do when running SPSS interactively. For examples
of tasks, see the list on p. 30 in Chapter 3.

Because scripts run within SPSS, one of your main decisions is what to do in the
graphical user interface versus what tasks to code into the script. Working in the user
interface allows maximum flexibility and user control—it is best for analytic tasks.
Scripting allows a sequence of actions to be repeated exactly—it is best for repetitive,
predictable tasks.

Look at the example scripts distributed with SPSS for Windows to get ideas about
what types of tasks can be scripted. Example scriptbg).are in the scripts folder in
the SPSS installation directory andI®PSS Products and Services\SPSS Script
eXchange on the SPSS for Windows CD-ROM.

Writing Script Code

Start writing script code by modifying starter scripts (for an example, see “Modifying
a Starter Script” on p. 76).

Before writing your own scripts, use the graphical user interface to perform the
tasks you want to script. At each step, think about the OLE Automation objects,
methods, and properties that correspond to what you are doing. For more information
and an example, see p. 30 in Chapter 3.

76
Chapter 4

Running Scripts

Autoscripts run automatically. Other scripts are run from the Utilities menu (see
Figure 4-3).

Examples

Modifying a Starter Script

The following steps show an example of how to work with a starter script. For this
example, we want to delete all Notes tables from an SPSS output file. We could
manually select and delete each unwanted table, or we could use a script.

Figure 4-1
Choosing a starter script

S - T |

Lok jr: I 5 Starter j | | Description
Delete by label sbs Thiz Starter Script -

allowes wou to delete

Jelete Mavigator [tems. sbs :
itemz from the
Footnote. sbs Mavigator bazed an
Feformat by labels. zbs a number
e of different criteria.

Reformat by walue. zbs
, Items can be deleted

Reformat misc pivat.sbs hased on the lype of
item [e.g.. Mote,
W arning), -

File narne: Delete Mavigator kems. she Open

e
Cancel |

» Launch SPSS. From the Windows Start menu choose:

Programs
SPSS for Windows
SPSS for Windows

77

Scripting Quickstart

Create a script window. From the SPSS menus choose:

File
New
Script

Choose a starter script. For example, sele@elete Navigator Items.sbs, which has a
promising description, since we want to delete all Notes tables from the output (see
Figure 4-1).

Review the script. Read the comments and look at the code. Decide if the script
supports what you want to do and, if it does, how you want to modify it to suit your
needs.

Modify the script. For example, make the necessary changes to delete all Notes tables.
For each line listed below, remove the comment charagteo(the beginning of the

line. Removing the comment character causes the line of code to be executed when the
script is run.

Line of Code Effect

Causes Note table items to be deleted when the
DeleteByAll procedure is called.

Call DeleteAlIByType(intType- Calls a procedure to delete all Notes takied
ToDelete) passes it the type of item to delete.

Call DeleteSelectedltems Calls a procedure to delete selected items.

intTypeToDelete = SPSSNote

A copy of the modified script is on the SPSS for Windows CD-ROM in
ISPSS\Developer\Programs|SPSS Script\Modify starter script.sbs.

Save the script. From the menus choose:
File
Save As...
Type a name and browse to a location. For example, save the script as
C:\SPSSIScripts\Delete all notes.sbs.

Open an output file. This script will work on any valid SPSS output filesfo) that
contains Notes tables. From the SPSS menus choose:
File
Open
Output...

78

Chapter 4
Navigate to the location of the output file and select it. A sample output file with two
Notes tables is included on the SPSS for Windows CD-ROM in
ISPSS\Developer\Programs\SPSS ScriptiModify starter script.spo.
» Run the script. From the SPSS menus choose:
Utilities
Run Script...
Navigate to the location where you saved the script and select it. For example, select
C:\SPSS|\Scripts\Delete all notes.sbs. The script runs and removes all Notes tables. (If
you ran the script oModify starter script.spo, there were seven items before you ran
the script and five items afterwards—the two Notes tables were deleted).
Since this script can be run on any valid SPSS output file that contains notes, you now
have a quick and easy way to accomplish what would otherwise be a boring and
repetitive task.
Adding an Autoscript
The following steps show an example of how to add a new autoscript procedure to the
default autoscript file. For this example, we want to automatically make the font of the
row totals bold italic whenever SPSS produces a Means table.
Figure 4-2
Autoscript file with a newly created autoscript ready for your code
™ Autoscript_sbs !Eln

File Edit “iew Scrpt Debug Analyze Graphs Ublities Window Help

S[E| 3| - (ml@] of a3 > [n]n]-=lesl=lcz] | B B Ele(k] 2]

Froc: IMeans Table_Report_Create J

1
2

Sub Means_Table Report Create(objTable As Chject, objOutputloc As Object, lnglndex As Long)
'Autoscript
'Trigoger Event: Report Table Creation after runhing Means procedure.

End Zub

4

[

79

Scripting Quickstart

Launch SPSS. From the Windows Start menu choose:

Programs
SPSS for Windows
SPSS for Windows

Open a data file. For example, open the employee data file. From the SPSS menus
choose:
File
Open
Data...

Selectemployee data.sav.

Run the procedure that creates the type of output item you want to customize. For
example, run the Means procedure. From the menus choose:

Analyze
Compare Means
Means...

Move Current Salary to the Dependent list anElmployment Category to the
Independent list.

Select the output item you want to customize. In the Viewer, scroll to the table titled
Reportand right-click to open the shortcut menu.

Create a new Autoscript. ChooseCreate/Edit Autoscript from the shortcut menu. This
automatically openautoscript.sbs in a script window and inserts several lines of code:

Comment. At the beginning of the file:

'enabled Means_Table_Report_Create

Autoscript procedure for Means table creation. At the end of the file (see Figure 4-2):

Sub Means_Table_Report_Create(objTable As Object, objOutputDoc As Object,
Ingindex As Long)

'‘Autoscript
‘Trigger Event: Report Table Creation after running Means procedure.

End Sub

Add the necessary code to accomplish the customizing you want. Insert your code
between theTrigger Event comment andnd Sub. In this case, we make the row totals

80

Chapter 4

bold italic. We’'ll use a procedure that is already in the autoscript file,
SelectRowLabelsAndData, to find and select the cells we want to change. The
completed code is:

Sub Means_Table_Report_Create(objTable As Object, objOutputDoc As Object,
Ingindex As Long)

'‘Autoscript
‘Trigger Event: Report Table Creation after running Means procedure.

‘Your inserted code begins here.
'‘Declare a variable to keep track of what cells are selected.
Dim bolSelection As Boolean

‘Call a procedure, SelectRowLabelsAndData, that selects the row TOTAL.
‘The objTable parameter is the Means table that has been created.
"It is passed to the procedure as objPivotTable.
‘The cTOTAL paramter, defined above as the string 'Total'
'is passed to the procedure as strSearchString.
Call SelectRowLabelsAndData(objTable, cTOTAL, bolSelection)

'‘When the procedure returns a cell selection, turn it bold and italic.
If bolSelection = True Then
objTable.TextStyle = SpssTSBoldltalic
End If
‘Your insterted code ends here

End Sub

The procedurselectRowLabelsAndData was already coded for us in the autoscript file.
What we did in this example was to apply that procedure to the type of table that we
wanted to customize—in this case, the Means table.

We found the available text styles fabjTable by using the script window’s object
browser. Follow the steps on p. 69 in Chapter 3 to open the object browser. Browse the
PivotTable data type and th&extStyle property. Click? for a list of available style
settings.

Save your changes. From the menus choose:

File
Save

Run the Autoscript. The script will run automatically each time you produce output with
the Means procedure. Open a data file and from the menus choose:
Analyze

Compare Means
Means...

81
Scripting Quickstart

» To deactivate the new Autoscript. From the menus choose:
Edit
Options...

Click the Scripts tab, and then clickieans_Table_Report_Create in the Autoscript
subroutine status lisb deselect it.

Writing an Original Script

The following steps show an example of how to write an original script. For this
example, we want to open an output filedo), export the visible items as HTML
(charts as JPEG), and close the file.

Figure 4-3
Running a script

i% Outputl - SPSS Viewer

Fil= Edit “iew Ingert Format Analyze Graphs EERNEER \Window Help
= | Yl m | Waniables... | = [] ?
SE|5|E]] =] o B=[R]; |+ - Do) =]
----- +{E] Output
EI Define Sets...
Usze Setz..

Lreate/Edit Autascript

Fun Script...

[esigrate Window

tenu Editor ..

Rurn Script |T|SF'SS Frocessor is ready o~

» Launch SPSS. From the Windows Start menu choose:

Programs
SPSS for Windows
SPSS for Windows

82
Chapter 4

» Perform the script scenario with the user interface. Think about the objects, methods,
and properties you are using. For this example, we’ll open an output file, export it, and
close the output file.
Open the output file. From the menus choose:
File
Open
Output...

Navigate to the location of the output file and select it. A sample output file is included
on the SPSS for Windows CD-ROM i8PSS|DeveloperiPrograms|SPSS
Script\Modify starter script.spo.

The OLE automation equivalent is to use thygnOutputDoc method orobjSpssApp to
openliSpssOutputDoc. ISpssOutputDoc.Designated=True was set when you opened the
file—documents are automatically designated when they are opened.

Export. In the Viewer, from the menus choose:

File
Export...

We want to export HTML for all visible objects, so sel@ritput document from the
Export list, theAll Visible Objects radio button, aneHTML file (*.htm) for the file type.
Click Options and select file typgPEG *.JPG to export charts as JPEG.

The OLE Automation equivalent is to use thgport method onSpssOutputDoc.

Close the output file. In the Viewer, from the menus choose:

File
Close

The OLE automation equivalent is to use ttiese method onSpssOutputDoc.

» Create a script window. From the SPSS menus choose:
File
New
Script
The window is created with the code:

Sub Main

End Sub

You will be inserting your code between those two lines.

83

Scripting Quickstart

» Write the code. From the user interface scenario in the step above, you already know
the basic steps, objects, methods, and properties. As you write the code, press F2 for
the object browser and for online Help on SPSS objects. See Appendix C for code-
writing conventions.

Declare variables and other housekeeping.

Sub Main
'‘Begin description.
‘This example gets the specified output document,
' designates it, and exports all visible items to HTML.
' Charts are exported as JPEG files.
'End description.

‘Declare variables.

Dim objOutputDoc As ISpssOutputDoc
Dim objSpssOptions As ISpssOptions
Dim strCurrentDir As String

Dim strOutputFileName As String

Dim strExportFileName As String

‘Make sure charts are exported as JPEG.
Set 0bjSPSSOptions = objSpssApp.Options
objSpssOptions.DefaultChartExportFormat = "JPEG File"

'‘Get the current directory to use as a default later.
strCurrentDir = objSpssApp.CurrentDirectory

Open the output file.

'‘Get the name of the output file to open. That's the file that you will export.
'You can get that from syntax via ScriptParameter.
strOutputFileName = objSpssApp.ScriptParameter(0)

'If the name wasn't passed with syntax, prompt the user.

If strOuptutFileName =" Then

strOutputFileName = GetFilePath$(,"spo", strCurrentDir, "Select Output File to
Export", 0)

End If

‘Now that we have the name of the file to Export, open and designate it.
Set objOutputDoc = objSpssApp.OpenOutputDoc (strOutputFileName)
objOutputDoc.Designated = True

84

Chapter 4

Export.

'Prompt the user for the name of the of the file to export to.
strExportFileName = GetFilePath$ ("Export.htm", "htm", , "Export File Name for "
+strOutputFileName, 3)

'‘Export it.
objOutputDoc.ExportDocument (SpssVisible, strExportFileName,
SpssFormatHtml, True)

Close the output file.

‘Close it.
objOutputDoc.Close
End Sub

Save the script. In the script window, from the menus choose:

File
Save

And type a name for the script—for exampleport output.sbs.

Run the script. You can run this script from the user interface or from syntax.
To run the script interactively and prompt the user for the output file to export, from the
menus choose (see Figure 4-3):
Utilities
Run Script...

Navigate to the location of your script file and select it. For example, sebguirt
output.sbs. You will be prompted for an output file to export and for the export
filename.

To run the script from syntax, use t8S€RIPT command syntax and include the name
of the output file to export as a script parameter. For example, the syntax:

SCRIPT 'c:\myscripts\Export output.sbs' ("myoutput.spo").

will open and exportyoutput.spo.

A copy of this script is included on the SPSS for Windows CD-ROM in
ISPSS|Developer\Programs\SPSS Script\Export output.sbs.

Chapter

Additional Examples

SPSS for Windows includes samples of code that illustrate various ways to use the
SPSS developer’s tools. This chapter provides a description of each sample program.
You may find the examples useful when you design applications, and you can take the
sample code and modify it to suit your needs. The code for all of the examples is
located on your SPSS for Windows CD-ROMIBPSSI|Developer.

Notes:

m The examples in this chapter come from a variety of sources and are written with
a variety of coding styles. They are intended only to illustrate the concepts
involved in writing applications with the SPSS developer’s tools; they do not
contain all of the error checking and exception handling typical of finished
applications.

m All Visual Basic examples were developed in version 4.0 and were resaved as
version 6.0 projects.

m All Visual Basic examples assume that SPSS is not currently running. If you want
to write an application that checks to see if SPSS is running, use the sample code
on p. 41 in Chapter 3 as your starting point.

For more examples. Additional examples that use the SPSS scripting facility are
available on the CD-ROM itSpss Products and Services\SPSS Script eXchange
and on the SPSS Web sitefatp.//www.spss.com/software/spss/scriptexchange.
Sample scripts are installed with the SPSS system inQbwpts folder. The sample
code for the Visual Basic application described in Chapter 3 is found in
ISPSSI\Developer\Programs\OLE Quickstart\spssole.vbp.

85

86

Chapter 5

Edit All Pivot Tables

i Outputl

FEile Edit “iew |nsert Fomat Analyze Graphs EEIES

Figure 5-1
Run Script on Viewer

- SP5S Viewer

Wwindow Help

E|H|§|@|§| !|_| El=| k]

Yariables. ..
File |nfo

o@
oog

= E

l

[E] Title

@ Emplo'fmerrt Cati
Dezcriptives

Tile

Motes

L Descriptive Stati
Crosstabs

Title

Mates

@ Case Processin
@ Gender * Employ—
Regression

Title

Motes

EI Wariables ErdjiLI
»

<]

Ernploy

+ -] @il (=3

Define Sets...
Uze Sets..

Create/E dit Autozcript

Y

M Fun Seript....
Mis Designate Window
Menu Editar ...
Employment Category
Cumulative
Frequency | Percent | %alid Percent FPercent
Walid Clerical 363 TH.E 7H.E TH.E
Custodial 27 a7 a7 823
Manager 24 17.7 17.7 100.0
-

Run Seript

[® [SPSS Processor is ready

I i

Description. This script finds each pivot table in an output document, activates it, and

modifies it. The distributed example applies the AutoFit method to all tables to

recalculate the cell size. The user can replace AutoFit with whatever pivot table editing

method(s) he or she chooses.

Development tools. The SPSS scripting facility and OLE Automation.

Features. The program shows how scripting can be used to automate routine editing

tasks.

Location. The program is located on the SPSS for Windows CD-ROM in
ISPSS|Developer\Programs|\SPSS Script\Edit all pivot tables.sbs.

Requirements. SPSS must be running, and an output file with at least one pivot table

must be open.

87
Additional Examples

Running the application. To run the script from the Viewer:
» Click the output window you want to edit. It must contain at least one pivot table.

» From the menus choose:
Utilities
Run Script...

» Browse to the location ofdit all pivot tables.sbs, and select it.

» Click Run.

Manage Multiple Instances of SPSS

Figure 5-2
Multiple instances of SPSS example

Thiz applet launches SPSS and opens all PSS data files found in a given directary, subject ta a
marimum number. Far each * zav file found, it launches a new instance of SPSS. Each data editor
iz made vizible and minimized as it's opened. The Open button opens the files. The Close buttan
clozes them and the SPSS zessions behind them.

SPS5 files open: HERS |5

Directory: [:\Frogram Filesh\SPS5 [open | s |

Description. This example opens a dialog box that prompts the user to a data file
location and the maximum number of files to open. After making these specifications,
the user click®pen. For each file in the location up to the maximum number, an
instance of SPSS starts and opens the file. Glhee button closes the files and exits

all instances of SPSS.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows a basic example of how to launch and handle multiple
instances of SPSS with OLE Automation. It exercises the Applicat&ps{App) and
ISpssDataDoc objects.

88

Chapter 5

Location. The program is located on the SPSS for Windows CD-ROM in
ISPSS|Developer\Programs\Visual Basic\Load SPSS data files\LoadSPSS.vbp.

Requirements. This example requires SPSS for Windows. It will open the SPSS data
files (.sav) from any location.

Running the application. Run the vbp file from within Visual Basic or execute
ISPSS|\Developer\Programs\Visual BasiclLoad SPSS data files\LoadSPSS.exe from
the SPSS for Windows CD-ROM.

Output Item Index

Figure 5-3
Output item index example

Output Item Index |

Current File : [none]

Thiz applet doeg the following things: -
(1) Start SPSS application if not running
(2] Open the specified output docurment
[3) Returnz the index of the lazt item in the

output document and lizts the labels for all items ;I

Last Index: [none] Labels:

Description. This simple program starts SPSS, opens the output file that the user
chooses, lists the number of items in the file, and prints the index number and label for
each item. The program demonstrates the way that output items are indexed in the
Viewer.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows how output items are indexed. It also shows how to raise
a Windows common dialog box to open a specific type of SPSS file. It introduces the
Output Items Collectioni§pssitems) andiSpssitem.

89

Additional Examples

Location. The program is located on the SPSS for Windows CD-ROM in
ISPSS\Developer\Programs\Visual BasiclList index|Istindex.vbp.

Requirements. This example requires SPSS for Windows. It works on any SPSS output
file (.spo). A sample output file is included in the same directory as the example.

Running the application. You can run thevbp file from within Visual Basic or execute
|SPSS|\Developer\Programs\Visual BasiclList index\Istindex.exe from the SPSS for
Windows CD-ROM.

Manipulate Output Items

Figure 5-4
Viewer output item manipulation example

. Yiewer Output Item Manipulation !EH

File: I[ngne]

Browse... |

Instuctions:
& Dperate on selection in fil€ [This application demonsztrates manipulating output
. iterns in the SPSS Wiewer,
¢~ Operate on all iterms of ype:
» Wfith thiz application pou can:
Output ltem Type 1] Manipulate itemsz you have zelected in the
[~ Chart output Wiewer
[~ IGraph 2] Manipulate items of a given type.
[~ Map) . -
I Heading Firgt, open an exizting S_F'SS output [.$|:u:_] filer with
& Browse button, W ait for the output Yiewer
L the B bttan, 4 ait for the output %
0g window to display.
[~ Mote
[~ Pivot Table To manipulat_e a sele_ction, click an ane or more
™ Roat output ikems in the Yiewer and push the butbons
T along the battarn,
o operate on all items of a given type [rather
I~ Teut T te on all tems of type [rath
[~ Title than the selection], check one or mare of the
arnin oxes to the left.
W arning [a! ta the left
Foreign
3 n both cazes, as you wark, obzerve the effect ol
IEPa e In both k ohserve the effect of
g wour actionz on the ikems in the Yiewer window.

Show | Eromutel Taller | SetPageEreakl Delete |

Hide: | [emaote | Sharter | Llear Fage Breakl

Exit |

90

Chapter 5

Description. This program manipulates items in Viewer (for example, it shows and
hides items). The program acts either on the user’s selection of items or on all items of
a given type (for example, charts, pivot tables, and notes).

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program illustrates how to use OLE Automation to navigate through the
outline tree in the Viewer, locate a specific type of output item, and uskodston
output items. It exercises th8pssOutputDoc, ISpssitems, ISpssitem objects, and the
SPSSType property; it also exercises tlnelete, Visible, Selected, Promote, Demote,
PageBreak, andHeight methods.

Location. The program is located on the SPSS for Windows CD-ROM in
ISPSS|Developer\Programs\Visual Basic\Manipulate nodes in the
Viewerlnavmanip.vbp.

Requirements. This example requires SPSS for Windows and an SPSS output file. A
sample output §po) file is included in the same directory as the example.

Running the application. You can run thevbp file from within Visual Basic or execute
ISPSS|Developer\Programs\Visual Basic\Manipulate nodes in the
Viewerlnavmanip.exe from the SPSS for Windows CD-ROM.

91
Additional Examples

Pivot Table Manipulation

Figure 5-5
Pivot table manipulation example

wi. Pivol Table Manipulation !EIH
Shade Canelation Diagonals Fed Flag Significant Cells
Select Pivot Table Title Digplay W ariable Mames and Labelz
Frint Row and Colurmn Labels Frint Lawer Labelz
Run Spntax and Frint Labelz Change Dimension Mames and Pivat
o 5P and Print Label Please wait until you can zee the ;I
[it e LLElarE S data editor before szelecting a
button.
[Eloze Opern M avigatan Window _I

E xit |

Description. This program starts SPSS, opensfneployee data.savfile, and waits for
the user to choose one of the pivot table manipulation buttons. The program
demonstrates a number of techniques for manipulating pivot table output through
automation. Available manipulations include applying color to table cells that meet
specific criteria, printing table labels and cell values, and pivoting a table.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows a variety of ways to customize a pivot table to meet your
needs, including modifications based on the values of table cells. It also shows how to
open a data file and run a syntax file to produce output and how to open an existing
output file. It introduces objects in the pivot table type library, including

92
Chapter 5

ISpssPivotTable, ISpssDataCells, ISpssLabels, ISpssLayerLabels, ISpssPivotMgr, and
ISpssDimension. In addition, it use$SpssDataDoc, ISpssSyntaxDoc, I1Spssltems,
ISpssOutputDoc, ISpssitems, andISpssltem.

Location. The program is located on the SPSS for Windows CD-ROM in
ISPSS|Developer\Programs\Visual Basic\Pivot table exerciser\pvixrsiz.vbp.

Requirements. This example requires SPSS for Windows, Hmployee data.sav data
file that is distributed with the SPSS Base system, and several SPSS syntax and output
files that are included in the same directory as the example.

Running the application. You can run thevbp file from within Visual Basic or execute
ISPSS|\Developer\Programs\Visual Basic\Pivot table exerciser\pvtxrsiz.exe from the
SPSS for Windows CD-ROM.

Correlation Matrix Diagonal

Figure 5-6
Correlation matrix diagonal example

Cormrelation Matrix Diagonal E |

Information about Correlation Matrix U pper Diagonal Applet:

- Aifter zelecting 'Remove Upper Diagonal', the Correlation b atris 1 pper il
Diagonal Applet opens Emplopee.zay and runs the Comnelations procedure
on all the wariables except id and bdate.

- The Pivat Table containing the autput from the Correlations procedure is ;I

i Remove Upper Diagonal I Festore | ppern Miaganal E it |

Current Statuz: |

Description. The correlation diagonal example opens a dialog box that prompts the user
to remove the upper diagonal of a correlation matrix. When the user ctieksve

Upper Diagonal, the application starts SPSS, opens a data file, runs the SPSS
Correlations procedure, and removes the upper diagonal from thémgsorrelations
table. A separate button restores the upper diagonalEXihbutton closes SPSS and

the example application.

Development tools. Visual Basic and SPSS OLE Automation.

93
Additional Examples

Features. The program shows a basic example of how SPSS output (in this case, a pivot
table object from a specific SPSS procedure) can be edited with OLE Automation. In
this example, specific cells in pivot table output are hidden. It exerciseSgksgtems,
ISpssltem, ISpssPivotTable, andiSpssDataCells objects. This kind of output

manipulation can also be done with the SPSS scriptinigjtia¢see subroutine
RemoveUpperDiag and functionGetvarGroupSize in autoscript.sbs, which is installed

with SPSS in theScripts folder).

Location. The program is located on the SPSS for Windows CD-ROM in
ISPSS\Developer\Programs\Visual BasiclCorrelations diagonal\corrdiag.vbp.

Requirements. This example requires SPSS for Windows and&heloyee data.sav
data file that is distributed with the SPSS Base system.

Running the application. You can run thevbp file from within Visual Basic or execute
ISPSS|\Developer\Programs\Visual Basic\Correlations diagonallcorrdiag.exe from the
SPSS for Windows CD-ROM.

Shorten Percentage Labels in Crosstabulation

Figure 5-7
Shorten percentage labels example

"' hen launched this application automatically ;I
creates crosstabluation output by running a
zyntan file,

"+ ke the output appears, follow the steps
below:
11 Select a crozstabulation table in the
output window,
21 Click on Bun.
3] Click, on E ®it to quit the applet.

The applet does the following things:
It charnges the % within § BowDimnension
Label, ColurmnDimension Label, % of Tatal}
to Row % and Caolumn % and
Total % [wherever applicable).

r'ou cah re-run the script by selecting anaother
table and clicking Rur. LI

94

Chapter 5

Description. This program starts SPSS, opens Bmployee data.sav file, and runs a
syntax file,Percent.sps, that produces crosstabulation pivot tables. The user selects the
table from the resulting output and clicksn to shorten its labels tww %, column %
andtotal % where appropriate.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows another basic example of how the SPSS output from a
specific SPSS procedure can be edited with OLE Automation. In this example, specific
label text in the pivot table output is located and replaced. It also shows how to open a
data file and run a syntax file to produce output. It exercises3pssitems, ISpssitem,
ISpssPivotTable, andiSpssLabels objects and uses ttRowLabelArray and

ColumnLabelArray methods, which returns a labels object. This kind of output
manipulation can also be done with the SPSS scriptintjfia¢see subroutines
ChangeToPercentandSearchAndReplaceLabel in autoscript.sbs, which is installed with
SPSS in thdScripts folder).

Location. The program is located on the SPSS for Windows CD-ROM in
ISPSS|Developer\Programs\Visual Basic\Shorten percentage labels in
crosstablulation\percent.vbp.

Requirements. This example requires SPSS for Windows, Hmeployee data.sav data
file that is distributed with the SPSS Base system, and an SPSS syntax file,
Percent.sps, which is included in the same directory as the example.

Running the application. You can run thevbp file from within Visual Basic or execute
|SPSS|Developer\Programs\Visual Basic\Shorten percentage labels in crosstabulation
|percent.exe from the SPSS for Windows CD-ROM.

95
Additional Examples

Make Wide Pivot Tables Narrow

Figure 5-8
Make wide pivot tables narrow example

Make Wide Tables Marrow m

Information about the make wide tablez narmow Applet:

Select Fun' to open an output document to process. ﬂ
The applet launchesz SPSS, opens the output document and runz the

b akewideT ablezM arrow subrouting on all pivot tables in the document,

M ake'wideT ables arow assumes tables with mare than 8 columns are

wide, -

E nit |

Current Status: |

Description. This example starts SPSS, opens the output file that the user chooses, and
applies a number of algorithms to make wide pivot tables narrower. Only tables with
more than eight columns are processed. When the user éiikshe application

prompts the user to save his or her changes.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows ways to automatically format tables using SPSS OLE
Automation. It introduces the Options objet3dssOptions) and exercises the
ISpssOutputDoc, ISpssltems, ISpssltem, PivotTable, ISpssFootnotes, ISpssDataCells, and
ISpssLabels objects.

Location. The program is located on the SPSS for Windows CD-ROM in
ISPSS\Developer\Programs|\Visual Basic\Make pivot tables narrow\narrow.vbp.

Requirements. This example requires SPSS for Windows. It works on any SPSS output
file (.spo). A sample output file with a wide table is included in the same directory as
the example.

Running the application. You can run thevbp file from within Visual Basic or execute
|SPSS|\Developer\Programs\Visual Basic\Make pivot tables narrow\narrow.exe from
the SPSS for Windows CD-ROM.

96

Chapter 5

Display, Print, and Export Reports

Figure 5-9

Payroll example

. HR Payroll Analysiz

File

HR Payroll Analysis

—Analyzes

Salary Comparizon

Wacation Uge

Sick Time Use

EEQ Report

Besults

. EEQ Report

oo Salary Camparizoh
----- YWacation Use
o Sick Time Use

Description. This application populates a tree control with SPSS analyses based on
employee data exported from a Ceridian human resources database. The user can
generate tables and charts showing average salaries, vacation time, and sick time. The
reports can be broken down by job title, department, marital status, gender, and
ethnicity. User requests are translated into SPSS syntax and submitted to SPSS. The
SPSS results are displayed in the application. Tables and charts generated by this
application can be viewed on-screen, printed, and exported. Export formats include

HTML and JPEG, which are suitable for posting on a company intranet.

97

Additional Examples

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program demonstrates how to use a Visual Basic user interface to collect
user requests for analyses and to display the SPSS output. The application generates
the appropriate SPSS syntax from the user interface, sends it to SPSS for processing,
and receives the results from SPSS. It exercisessipsApp, ISpssOptions,

ISpssDataDoc, ISpssOutputDoc, ISpssitems, andISpssitem. It also accesses pivot tables

with PivotTable, ISpssLabels, ISpssPivotMgr, andiSpssDimension and accesses charts

with the ExportChart method onSpssChart.

Location. The program is located on the SPSS for Windows CD-ROM in
|SPSS\Developer\Programs\Payroll\payroll.vbp.

Requirements. This example requires SPSS for Windows, the dataddedian.sav,

and several SPSS files that are included in the same directory as the example. Before
you run the program, you must enable copying of objects as ActiveX controls from
SPSS by running the filebjs-on.bat in your SPSS directory.

Running the application. You can run thevbp file from within Visual Basic or execute
|SPSS\Developer\Programs\Payroll\payroll.exe from the SPSS for Widows CD-ROM.

98

Chapter 5

Display a Report in Microsoft Word

Figure 5-10
Marketing quarterly expense report example
iw. Quarterly Expenze Report !EIH
Cluarter of the Year: m bdarket: |AII j
BEermarks:

Frovide your initial comments here.

[~ Miew Bunning Application

Start Load List Process Yiew

hiz example uses OLE Automation with PSS and Microsoft Word oK
o automatically prepare a quarterly marketing expense repor. In
an actual application, the firsttwo command buttons abowve this box

ould be incorporated with the form load event and the last two into
he QK button, which is initially disabled for this demonstratian, Exit

Description. This application is written for the international office of a fictitious
company to perform a quarterly analysis of marketing expenditures. It combines the
analytic capability of SPSS with the presentation capability of Microsoft Word.

The program starts SPSS, opens tiexpense.sav file, populates the dialog box
with values from the SPSSfile, and starts Microsoft Word. The user selects the quarter
and international region of interest and clicksw to see the SPSS tables and charts in
a Microsoft Word document using a templateskpense.dot).

Development tools. Visual Basic, Microsoft Word macro recorder (Visual Basic for
Applications), and SPSS OLE Automation.

Features. The program demonstrates communication between software applications. It
uses SPSS OLE Automation and a Microsoft Word macro to pass the results of an
SPSS analysis to a predefined Microsoft Word form.

Location. The program is located on the SPSS for Windows CD-ROM in
ISPSS|\Developer\Programs\Microsoft Word VBAlwdsample.vbp andwdsample.dot.

99
Additional Examples

Requirements. This example requires SPSS for Windows, Microsoft Word 97 or later,
themexpense.sav SPSS data file, and theexpense.dot Microsoft Word template that
are included in the same directory as the example.

Running the application. You can run thevbp file from within Visual Basic or execute
|SPSS|\Developer\Programs\Microsoft Word VBAlwdsample.exe from the SPSS for
Windows CD-ROM.

Analyze Excel Data and Display Reports in Excel

Figure 5-11
Microsoft Excel example

Exelxompe R

Select an SPSS Statiskical Procedure

IFactDr j

{G:|X|>:=-|

View Excel

oK | it

Description. This example uses SPSS to analyze data in a Microsoft Excel worksheet.
The program exports the columns in the current worksheet as variables for analyses in
SPSS and opens a dialog box that prompts the user to select a statistical procedure. The
SPSS dialog box for the requested procedure is displayed, allowing the user to select
variables for analysis. The results of the analysis are passed back to Excel and are
displayed on one or more worksheets. Optionally, the user can display the SPSS
application, transfer SPSS-created data (for example, regression residuals) to Excel,
control which SPSS output objects to display, and specify the format for exported
SPSS pivot tables.

Development tools. Microsoft Excel macro (Visual Basic for Applications) and SPSS
OLE Automation.

Features. The program demonstrates communication and data transfer between
software applications. It uses Excel and SPSS OLE Automation to pass data from an

100
Chapter 5

Excel spreadsheet to SPSS for analysis. The SPSS output is passed back to Excel for
display and further analysis. The program shows how to open SPSS dialog boxes from
another application. It exercises tt8pssDocuments, ISpssDataDoc, ISpssOutputDoc,
ISpssOutputitems, andiSpssOutputitem objects. In addition, it uses the
InvokeDialogAndReturnSyntax with menu pathsixecuteCommands, Copy, and

ExportChart methods.

Location. The program is located on the SPSS for Windows CD-ROM in
ISPSS|Developer\Programs\Microsoft Excel VBAldkexcel.xls.

Requirements. This example requires SPSS for Windows and Excel 97 or later. It works
on any Excel worksheet with appropriate numeric data. A sample worksheet,
Employee data.xls, is included in the same directory as the example.

Running the application. You can run the Excel macraikexcel.xIs) from an Excel
worksheetAn easy way to run the macro is to associate it with a toolbar icon. You can
also run it from the Visual Basic editor.

To run from a toolbar:
» Open the macrakexcel.xls in Excel.

» From the menus choose:

Tools
Customize...

» If the toolbar where you want to add the icon is not visible, clickThelbars tab and
then click the check box next to the toolbar name.

» Click theCommands tab.

» SelectMacros from the Categories list.

v

Drag a custom button icon from the Customized dialog box onto the toolbar (leave the
Customize dialog box open).

Right-click the toolbar button, and selexdsign Macro from the shortcut menu.
SelectMain from the list of macros.

Close the Customize dialog box.

v v v VY

Open a worksheet that contains that data you want to analyze in SPSS (any Excel
worksheet with appropriate numeric data will work).

101

Additional Examples

To run in the Visual Basic editor:
» Open the macrakexcel.xls in Excel.

» From the menus choose:

Tools
Macro
Macros...

» SelectMain from the list of macros.

» Click Edit.

Production Facility Code

Figure 5-12
SPSS Production Facility

ag 5PSS Production Facility [_ O] x]
File Edit Bun ‘wWindows Help

0| || 3] &2l =]
ag 9P55Jobl !Elm

Creatordowner: Im_l,luserid

Syntax Files: E
Bemove Edit...
Comments: j
- Fi eI Output Tpe
Tink autput on completion of |2 .
g i l ’7‘? Wigwer € Draft Viewer

"Folder fiar cutput

oMy Documents Browse... |

Export Optionsz... | Ueer Prompts... |

102

Chapter 5

Description. The SPSS Production Facility is distributed with SPSS, so that SPSS runs

in an automated fashion. SPSS runs unattended and terminates after executing the last
command, so that you can perform other tasks while it runs. Production mode is useful

if you often run the same set of time-consuming analyses, such as weekly reports.

The SPSS Production Facility uses command syntax files to instruct SPSS what to
do. Each production run creates an output file with the same name as the production
job and the extensiorspo. For example, a production job file namertbdjob.spp
creates an output document nameddjob.spo.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows how to use SPSS OLE Automation to create an
application that handles routine, time-consuming tasks. This example also has a more
complex user interface and error-handling capability compared to the other examples.
It also demonstrates how to offer users the choice of running SPSS in a distributed
analysis mode, introducingpssCSApp, ISpssServers, andiSpssServer.

Location. The source code is distributed on the SPSS for Windows CD-ROM in
ISPSS|Developer\Programs\Visual Basic\Source code for SPSS Production Facility.
The executablespssprod.exe, is located in your SPSS for Windows installation
directory (C:\Program Files\SPSS by default).

Requirements. This example requires SPSS for Windows. It can be used with any valid
SPSS command syntax file.

Running the application. You can run thespssprod.vbp file from within Visual Basic or
executeprodmode.exe from your SPSS for Windows installation directory.

103

Run Syntax Code

Figure 5-13
Running syntax from Windows Explorer

BN Exploring - D:ASPS510

Additional Examples

File Edit %iew Toolz Help
[Spssto =] & sl fleld o X&) meEE
| & Folders | Contents of D:ASPSS 10
L——_ID SP5S Data Access PE;I M ame I Sizel Type AI
=1 books [Lacks File Folder
D odbe [MapData File: Falder
- salnk Ea Maps File Folder
EI‘E Spssil J (3 Sciipts File Falder
g Locks ER mysuntan 5P Open “m GPSS Syntax Docu
5 mapData e1ea bin ;['i: t EIN File
: abs regrord. bt - T ext Document
EI{:l Scripts s bt Bun IT ‘D t
T | L i
1| | » 1 B3 Add to Mysyntas. zip »
Run Send Ta ’ Y
Cut
Copy
Create Shortcut
Delete
Rename
Properties

Description. The Run Syntax utility is distributed with SPSSrteman SPSS command

syntax file from the Windows Explorer. The utility launches SPSS, opens the syntax
file, runs it, and displays the output in a Viewer window. When SPSS for Windows is

installed, it automatically registerskuUN command for the syntax.6ps) document.
The RUN command executesnsyntx.exe on the currently selected syntax file.

Development tools. Visual Basic and SPSS OLE Automation.

104

Chapter 5

>

>

>

Features. The program shows how you can use SPSS OLE Automation and the
Windows Registry to add commands to the Windows Explorer File and shortcut
menus. It introduces the Documents Collecti@pgésDocuments) and exercises the
ISpssSyntaxDoc, ISpssDataDoc, andiSpssOutputDoc objects. You can see how
runsyntx.exe is registered by looking at the
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\SPSS.SyntaxDoc\shel\Run\command
key in the Windows Registry editor.

Location. The source code is distributed on the SPSS for Windows CD-ROM located
in ISPSSIDeveloper\Programs\Visual Basic\Source code for Runsyntx.exe. The
executable isin your SPSS for Windows installation directaryRrogram Files\SPSS

by default).

Requirements. This example requires SPSS for Windows. It can be used with any valid
SPSS command syntax file.

Running the application. You can run theunsyntx.vbp file from within Visual Basic or
executerunsyntx.exe. This can be done as follows:

Select a syntax*(sps) file in the Windows Explorer.
Right-click to get the shortcut menu.

From the shortcut menu clidkun.

105

Additional Examples

Display Dictionary Information

Figure 5-14
Input/output DLL example

1k, SPSS Data File Dictionary [_ O] x]
File Edit Window Help

IE Employee data_sav [_ (O] x|

File: D :ASPSS18\Employee data.sav S
System: MS WIHDOWS Release 8.8

Release: 88 .080. 088

Created: 22-Dec-97 @1:12:88

Label: 85 .0808.88

Cases: L7y

Case size: 88 bytes (18 elements)

Compression: yes

Weight var: none

Documents: no |
Date vars: no

Uar sets: yes

Mult resp: no

DEW Info: no

DEW GUID: no

Text info: no

Uariables: 18 -
KN W

Description. This example demonstrates how to use the SPSS input/output DLL to
retrieve data dictionary information (for example, variable names) from an SPSS data
file. The user selects a file and views the dictionary information in a child window.
There are two versions of the program: one written in Visual C++ and one written in
Visual Basic.

Development tools. Visual Basic or Visual C++ and the SPSS input/output DLL. The
I/O DLL is documented in Appendix A.

Location. The program is located on the SPSS for Windows CD-ROM in
ISPSS\Developer\lO_DLL\Smpl_vbldictlist.vbp and
ISPSS\Developer\lO_DLL\Smpl_cppldictlist.cpp.

Requirements. This example requires SPSS for Windows and the input/output DLL
spssio32.dll (or spssio16.dllin its 16-bit incarnation) that are included on the SPSS for

106
Chapter 5

Windows CD-ROM inlSPSS\DeveloperliO_DLLI. You'll need Visual Basic or Visual
C++ to compile the example.

Running the application. You can run thevbp from within Visual Basic or run thecpp
file from within Visual C++. Instructions for compiling executables are located in
ISPSS|\Developer\lO_DLLI\Smpl_vblsmpl_vb.doc and

ISPSS\Developer\lO_DLL\Smpl _cpp\smpl_cpp.doc on the SPSS for Windows
CD-ROM.

Appendix

A
SPSS Input/Output DLL

An SPSS data file is a binary file that contains the case data on which SPSS operates
and a dictionary describing the contents of the file. Many developers have
successfully created applications that directly read and write SPSS data files. Some of
these developers have asked for a dynamically linked library (DLL) to help them
manipulate the rather complex format of SPSS data files. The I/0O DLL documented
in this appendix is designed to satisfy this need.

You can use the I/O DLL to:

Read and write SPSS data files

Set general file attributes, create variables

Set values for variables

Read cases

Copy a dictionary

Append cases to an SPSS data file
m Directly access data

Developers can call SPSS I/O DLL procedures in client programs written in C, Visual
Basic, and other programming languages. It is necessary to include the header file
spssdio.h. The specific calling conventions arepascal for 16-bit programs and
__stdcall for 32-bit programs. The_stdcall conventions are compatible with
FORTRAN, although déing I/0 DLL procedures is not specificallyupported for
FORTRAN programs.

This appendix outlines the steps for developing an application using the 1/O DLL
procedures. It also contains a description of each procedure.

107

108

Appendix A

The I/O DLL files are on the SPSS for Windows CD-ROMépss\developerlio_dll.

There are 16-bit and 32-bit versions.

Using the /0 DLL

The following sections list the sequence of procedures calls required to complete
specific tasks with the I/O DLL. See “DLL Procedure Reference” on p. 118 for detailed
information about each procedure.

Writing an SPSS Data File

The sequence of procedure calls to create an SPSS data file is as follows:

1.

To open a physical file for output and tatialize internal data structures, call
spssOpenWrite.

To set general file attributes, such as file label and compressionpsstiletidString
andspssSetCompression. These attributes may also be set anytime before the dictio-
nary is committed (see step 7).

To create one or more variables, cpbsSetvVarName.

To set attributes of variables, such as output formats, variable and value labels,
missing values, etc., call appropriate procedures, suspsaSetVarPrintFormat,
spssSetVarLabel, spssSetVarNValueLabel, etc. Variable creation and attribute set-

ting may be interleaved as long as no reference is made to a variable that has not
yet been created.

(Optional) If you want to set variable sets, Trends date variables, or multiple re-
sponse set information, calbssSetVariableSets, spssSetDateVariables, Or
spssSetMultRespDefs.

To set the case weight variable, caglbsSetCaseWeightVar.

To commit the dictionary, casbssCommitHeader. Dictionary information may no
longer be modified.

To prepare to set case data values, galtGetvarHandle once for each variable

and save the returned variable handles. A variable handle contains an index that
allows data to be updated efficiently during case processing. While setting data
values, variables must be referenced via their handles and not their names.

109
SPSS Input/Output DLL

9. To setvalues of all variables for a case, epfisSetvalueChar for string variables
andspssSetValueNumeric for numeric ones. To write out the case, call
spssCommitCaseRecord. Repeat from the beginning of this step until all cases are
written.

10. To terminate file processing, caflssCloseWrite.

Utility procedures such agpssSysmisval and any of thepssConvert procedures may
be called at any time. They are useful primarily while setting case data values.

It is possible to construct complete cases in the form the cases would be written to an
uncompressed data file and then present them to the DLL for output (which will take
care of compression if necessary). Note that it is very easy to write out garbage this
way. To use this approach, replace step 8 and step 9 with the following steps:

11. To obtain the size of an uncompressed case record in bytesyssaktCaseSize.
Make sure that the size is what you think it should be. Allocate a buffer of that size.

12. Fill up the buffer with the correctly encoded numeric and string values, taking care of
blank padding and doubleword alignment. To write the casesigsivholeCaseOut.
Repeat from the beginning of this step until all cases are written.

Copying a Dictionary

Developers can open a new file for output and initialize its dictionary from that of an
existing file. The functionspssOpenWriteCopy, that implements this feature is a slight
extension obpssOpenWrite. It is useful when the dictionary or data of an existing file is

to be modified or all of its data is to be replaced. The typical sequence of operations is:

1. CallspssOpenwriteCopy (newFileName, oldFileName, ...) to open a new file initial-
ized with a copy of the old file’s dictionary.

2. CallspssOpenRead (oldFileName, ...) to access the old file’s data.

Appending Cases to a Existing SPSS Data File

To append cases, the existing data file must be compatible with the host system; that
is, the system that originally created the file must use the same bit ordering and the
same representation for the system-missing value as the host system. For example, a
file created on a computer that uses high-order-first bit ordering (for example,

110
Appendix A

Motorola) cannot be extended on an computer that uses low-order-first bit ordering (for
example, Intel).

When appending cases, no changes are made to the dictionary other than the number
of cases. The originating system and the creation date are not modified.

The sequence of procedure calls to append cases to an existing SPSS data file is as
follows:

1. Toopen aphysicalfile and to initialize internal data structuresspesdbpenAppend.

2. To get general file attributes, such as file label, compression, and case weight, call
spssGetldString, spssGetCompression, andspssGetCaseWeightVar. To getthe list of
variable names and types, csgksGetvarNames, or call spssGetNumberofVaribles
andspssGetVarinfo if you are using Visual Basic. To get attributes of variables,
such as output formats, variable and value labels, missing values, etc., call
spssGetVarPrintFormat, spssGetVarLabel, spssGetVarNValueLabel(s), etc.

3. To set values of all variables for a case, spdisSetvalueChar for string variables
andspssSetValueNumeric for numeric variables. To append the case, call
spssCommitCaseRecord. Repeat from the beginning of this step until all cases are
written.

4. To terminate file processing, capssCloseAppend.

Utility procedures such apssSysmisval and any of thepssConvert procedures may
be called at any time. They are useful primarily while setting case data values.

For step 3, itis also possible to caflsswholeCaseOut to construct complete cases
in the form in which the cases would be written to an uncompressed data file and then
present them to the DLL for output (which will take care of compression if necessary).
The same precaution should be taken as you write whole cases to an SPSS data file.

Reading an SPSS Data File

The sequence of procedure calls to read an SPSS data file is much less restricted than
the sequence of calls to write an SPSS data file. Cases, of course, must be read in
sequence. However, calls that report file or variable attributes may be made anytime
after the file is opened. A typical sequence of steps is:

1. To open a physical file for input and to initialize internal data structures, call
spssOpenRead.

111

7.

SPSS Input/Output DLL

To get general file attributes, such as file label, compression, and case weight, call
spssGetldString, spssGetCompression, andspssGetCaseWeightVar. To getthe list of
variable names and types, cedbsGetvarNames, or callspssGetNumberofVaribles
andspssGetVvarinfo if you are using Visual Basic. To get attributes of variables,

such as output formats, variable and value labels, missing values, etc., call
spssGetVarPrintFormat, spssGetVarLabel, spssGetVarNValueLabel(s), etc.

(Optional) If you want to set variable sets, Trends date variables, or multiple
response set information, capissSetVariableSets, spssSetDateVariables, or
spssSetMultRespDefs.

To find out the number of cases in the file, calbsGetNumberofCases.

To prepare to read case values, sgdbGetvarHandle once for each variable whose
values are of interest and save the returned variable handles. A variable handle
contains an index that allows data to be retrieved efficiently during case process-
ing. While retrieving data values, variables must be referenced via their handles
and not their names.

To read the next case into the library’s internal buffers,gakdReadCaseRecord.

To getvalues of variables for a case, calisGetvalueChar for string variables and
spssGetValueNumeric for numeric ones. Repeat from the beginning of this step un-
til all cases are read.

To terminate file processing, calpssCloseRead.

Utility procedures such apssSysmisval and any of thepssConvert procedures may

be called at any time. They are useful primarily while interpreting case data values. The
spssFree... procedures should also be used where appropriate to free dynamically
allocated data returned by the library.

Here, too, it is possible to receive from the DLL complete cases in the form in which
the cases would appear in an uncompressed data file. Extracting data values from the
case record is entirely up to the caller in this case. For this approach, replace step 5 and
step 6 with the following steps:

8.

To obtain the size of an uncompressed case record in bytespssadletCaseSize.
Allocate a buffer of that size.

To read the next case into your buffer, apdswholeCaseln. Extract the values
you need from the buffer. Repeat from the beginning of this step until all cases are
read.

112

Appendix A

Direct Access Input

The File I/O API supports direct access to the data in existing files. The basic
mechanism is to calipssSeekNextCase, specifying a zero-origin case number before
calling spssWholeCaseln or spssReadCaseRecord. Note that direct reads from

compressed SPSS data files require reading all of the data up to the requested case—
that is, performance may not be sparkling when retrieving a few cases. Once an index
of the cases has been constructed, performance is adequate.

Working with SPSS Data Files

Variable Names and String Values

A user-definable SPSS variable name must be valid in the current locale. In SPSS for
Windows, variable names must obey the following rules:

m The name must begin with a letter. The remaining characters may be any letter, any
digit, a period, or the symbols @, #, _, or $.

m Variable names cannot end with a period. Names that end with an underscore
should be avoided (to avoid name conflicts with variables automatically created by
some procedures).

m The length of the name cannot exceed eight characters.
m Blanks and special characters (for example, !, ?, *) cannot be used.

m Each variable name must be unique; duplication is not allowed. Variable names are
not case sensitive. The nam@sWVAR, NewVar, andnewvar are all considered
identical.

m Reserved keywordA(L, NE, EQ, TO, LE, LT, BY, OR, GT, AND, NOT, GE, and
WITH) cannot be used.

If the names in an SPSS data file created in another locale are invalid in the current
locale (for example, double-byte characters), the 1/O DLL will create acceptable
names. These names are returned upon inquiry and can be useiiesteg
parameters in procedures requiring variable names. The names in the data file will not
be changed.

In the 1/0O DLL, procedures that return variable names return them in upper case as
null-terminated strings without any trailing blanks. Procedures that take variable

113
SPSS Input/Output DLL

names as input will accept mixed case and any number of trailing blanks without a
problem. These procedures change everything to upper case and trim trailing blanks
before using the variable names.

Similarly, procedures that return values of string variables return them as null-
terminated strings whose lengths are equal to the lengths of the variables. Procedures
that take string variable values as input accept any number of trailing blanks and
effectively trim the values to the variables’ lengths before using them.

Accessing Variable and Value Labels

Beginning with SPSS 7.5, the limit on the length of variable labels was increased from
120 to 256 bytes. There were two ways in which shesGetvarLabel function could

be modified to handle the longer labels. First, it could continue to return a maximum
of 120 bytes for compatibility with existing applications. Second, it could return a
maximum ofSPSS_MAX_VARLABEL bytes for compatibility with new SPSS data files.
The resolution was to continue to return a maximum of 120 bytes and to introduce a
new function spssGetVvarLabelLong, which permits the client to specify the maximum
number of bytes to return. In anticipation of possible future increases in the maximum
width of value labels, two parallel functiongyssGetvarNValueLabelLong and
spssGetVarCValueLabelLong, were added for retrieving the value labels of numeric and
short string variables.

System-Missing Value

The special floating point value used to encode the system-missing value may differ
from platform to platform, and the value encoded in an SPSS data file may differ from
the one used on the host platform (one on which the application and the DLL are
running). Files witten thiough the DLL use the host system-missing value, which may
be obtained by callingpssSysmisval. For files being read using the DLL, data values
having the system-missing value encoded in the file are converted to the host system-
missing value; the system-missing value used in the data file is invisible to the user of
the DLL.

114
Appendix A

Measurement Level, Column Width, and Alignment

Starting with release 8.0, SPSS supports three additional variable attributes:
measurement level, column width, and alignment. These attributes are not necessarily
present an SPSS data file. However, when one attribute is recorded for a variable, all
three must be recorded for every variable. Default values are assigned as necessary.

For example, if a new data file is being created and the measurement level attribute
is explicitly set for one variable, default values will be assigned to measurement levels
of all remaining variables, and column widths and alignments will be assigned to all
variables. If no measurement level, column width, or alignment is assigned, the file
will be written without values for any attribute.

There are six new file I/O API functions to access to these attributes:
spssGetVarMeasurelLevel, spssSetVarMeasurelLevel, spssGetVarColumnWidth,
spssSetVarColumnWidth, spssGetVarAlignment, andspssSetVarAlignment.

Support for Documents

SPSS has BOCUMENT command that can be used to store blocks of text in a data file.
Until release 8.0, the 1/O API had no support for documents—stored documents, if any,
were discarded when opening an existing file, and there was no way to add documents
to a new file. Starting with release 8.0, limited support for stored documents is
provided that allows the user to retain existing documents.

When a file is opened for reading, its documents record is read and kept; if a file
being written out has documents, they are stored in the dictionary. Since there is still
no way to explicitly get or set documents, one may wonder how it is possible for an
output file to acquire documents. The answer is, by uspsgOpenWriteCopy to
initialize a dictionary or by calling thepssCopyDocuments function to copy
documents from one file to another. If an output file is created with
spssOpenWriteCopy, the documents record of the file the dictionary is copied from is
retained and written out when the dictionary is.

115

SPSS Input/Output DLL

Coding Your Program

Any source file that references DLL procedures mustinclude the hepsl&fio.h. The

latter provides ANSI C prototypes for the DLL procedures and defines useful macros;
it does not require any other headers to be included beyond what your program
requires. To protect against name clashes, all DLL function names startpsitnd

all macro names are prefixed wiPSS_. In addition to the macros explicitly
mentioned in the DLL procedurespssdio.h defines macros for the maximum sizes of
various SPSS data file objects that may help to make your progtétie anore

readable:

SPSS_MAX_VARNAME Variable name

SPSS_MAX_SHORTSTRING Short string variable

SPSS_MAX_IDSTRING File label string

SPSS_MAX_LONGSTRING Long string variable

SPSS_MAX_VALLABEL Value label

SPSS_MAX_VARLABEL Variable label
16-Bit Versus 32-Bit DLL

There are two I/O DLL versions implemented for SPSS for Windows: the 16-bit
version withspssio16.dll andspssio16.lib and the 32-bit version witkpssio32.dll and
spssio32.lib. The header filespssdio.h, is the same.

The 16-bit version is subject to the following size limitations:

m The case size cannot exceed 65,504. The case size is computed by summing up the
lengths of all variables, counting all numeric variables as having a length of 8 and
rounding the length of string variables up to the next multiple of 8.

m A value labels set cannot contain labels for more than 4094 values.
m The length of the variable sets information must be less than 32,767.

m The number of elements comprising Trends date variables information cannot
exceed 16,376.

An attemptto read a file exceeding these limits triggers the s665_INVALID_FILE;
an attempt to create a file exceeding these limits triggers the error
SPSS_NO_MEMORY.

116
Appendix A

Visual Basic Clients

The file spssdio.bas contains declarations of most of the API functions in a format that
can be used in Visual Basic. The file also contains definitions of symbolic constants for
all of the function return codes and the SPSS format codes. Three comments are
relevant to this file:

m |tis necessary to have a knowledge of Chapter 26, “Calling Procedures in DLLs,”
in the Microsoft Visual Basic Programmer’s Guiddote that where the API
function parameter should be & a 32-bit Visual Basic application should use a
long, but a 16-bit application should use mreger. Also, you should be careful to
make string parameters suitably long before calling the API.

m Some functions, such apssGetvarNames, are not compatible with being called
from Visual Basic. The declarations of these functions are present only as
comments.

m Only about 20% of the functions have actually been called from a working Visual
Basic program. The inference is that some of the declarations are probably
incorrect.

The functionspssGetvarNames is a little difficult to call from languages other than C
because it returns pointers to two vectors. BASIC and FORTRAN are not very well
equipped to deal with pointers. Instead, use functgpssGetNumberofVariables and
spssGetVarinfo, which enable the client program to access the same information in a
little different way. Another functionspssHostSysmisVal, is provided as an alternative
to spssSysmisVal to avoid returning a double on the stack.

Borland C++

Borland C++ users can use release 8.0.1 and latepssfo32.dll and the associated
spssdio.h. They cannot, however, use the distribuspdsio32.1ib. It is necessary to
generate an import library from the distributed DLL using itmglib.exe console
application, which comes with the compiler using the following syntax:

implib -w spssio32.lib spssio32.dll
The-w switch suppresses almost 100 warnings, such as the following:

Warning duplicate symbol: spssCloseAppend

117

SPSS Input/Output DLL

Sample Programs

The developer’s tools include a sample Windows MDI application, described in
Chapter 5 on p. 105, which utilizes the 1/O DLL to read dictionary information from
an SPSS data file. The source files for the application are present in both 16-bit and 32-
bit versions, aglict/ls16 anddictls, respectively.

The dictionary sample code was initially written using the Visual C++ IDE
(Integrated Development Environment). As distributed, itis composed of two principal
C++ source filesdictlist.cpp, which contains the boilerplate for the application, the
MDI frame window, the child window, and the view; amfkttdoc.cpp, which
implements the document class and contains all of the I/O DLL calls.

Two make files are suppliedtict/s16.mak, which builds the 16-bit version of the
application in a subdirectory namdé and is compatible with Microsoft Visual C++
1.52, anddict/s32.mak, which builds the 32-bit version in a subdirectory nansgénd
is compatible with Microsoft Visual C++ 4.0. The make files generate applications
using the DLL resident version of the MFC (Microsoft Foundation Classes) run-time.
For different compiler versions, you may need to modify the make files. These make
files are not those generated by the IDE and should be easy to modify.

The DICTLIST sample application is distributed with the I/O DLL on the SPSS for
Windows CD-ROM inlispssldeveloperlio_dil\smpl_cpp.

The developer’s tools also include a sample Visual Basic application. This
application mimics the sample C++ application in that it displays the dictionaries of
SPSS data files. The application consists of an MDI frame windéwingdi.frm), an
about box {ictabou.frm), and an MDI child window ictchid.frm). The MDI child
window does most of the work and makes most of the calls to the API functions. A
Visual Basic project file dictlist.vbp) is also provided. When working with this project,
the function declarations filespssdio.bas) must be available on the SPSS for Windows
CD-ROM in Ispssldeveloperlio_dil\smpl_vb.

118

Appendix A

DLL Procedure Reference

The procedures are listed in alphabetical order.

spssAddMultRespDefC

int spssAddMultRespDefC(int handle, const char *mrSetName,
const char *mrSetLabel, int isDichotomy, const char *countedValue,
const char **varNames, int numvars)

Description

This function adds a multiple rpsnse set definition over short string variables to the

dictionary.
Parameter
handle

mrSetName

mrSetlLabel

isDichotomy

countedValue

varNames

numvars

Description
Handle to the data file.

Name of the multiple response set. A null-terminated string up to
seven characters long but otherwise obeying the rules for a valid
variable name. Case is immaterial.

Label for the multiple response set. A null-terminated string up to
60 characters long; only the first 60 characters are used if longer.
May beNULL or the empty string to indicate that no label is desired.

Nonzero if the variables in the set are coded as dichotomies, zero
otherwise.

A null-terminated string containing the counted value. Necessary
whenisDichotomy is nonzero, in which case it must be 1-8 charac-
ters long, and ignored otherwise. May RELL if isDichotomy is
zero.

Array of null-terminated strings containing the names of the vari-
ables in the set. All variables in the list must be short strings. Case
is immaterial.

Number of variables in the list (ivarNames). Must be at least two.

119

Returns

SPSS Input/Output DLL

If all goes well, adds the multiple response set to the dictionary and returns zero
(SPSS_OK) or negative (a warning). Otherwise, returns a positive error code and does
not add anything to the multiple response sets already defined, if any.

Error Code
SPSS _OK
SPSS_EXC_LENG60

SPSS_INVALID_HANDLE
SPSS_OPEN_RDMODE
SPSS_DICT_COMMIT
SPSS_NO_VARIABLES
SPSS_ EXC_STRVALUE

SPSS_INVALID_MRSETNAME
SPSS_DUP_MRSETNAME
SPSS_INVALID_MRSETDEF

SPSS_INVALID_VARNAME
SPSS_VAR_NOTFOUND

SPSS_SHORTSTR_EXP

SPSS_NO_MEMORY

spssAddMultRespDefN

Description

No error

Only the first 60 characters of the label were used
(warning)

The file handle is not valid

The file is open for input or append
spssCommitHeader has already been called
Fewer than two variables in list

isDichotomy is nonzero andountedValue is NULL,
empty, or longer than 8 characters

The multiple response set name is invalid
The multiple response set name is a duplicate

Existing multiple response set definitions are
invalid

One or more variable names in list are invalid

One or more variables in list were not found in
dictionary

At least one variable in the list is numeric or long
string

Insufficient memory to store the definition

int spssAddMultRespDefN(int handle, const char *mrSetName,
const char *mrSetLabel, int isDichotomy, long countedValue,

const char **varNames, int numVars)

120
Appendix A

Description

This function adds a multiple response set definition over numeric variables to the

dictionary.

Parameter Description

handle Handle to the data file.

mrSetName Name of the multiple response set. A null-terminated string up to
seven characters long but otherwise obeying the rules for a valid
variable name. Case is immaterial.

mrSetLabel Label for the multiple response set. A null-terminated string up to
60 characters long; only the first 60 characters are used if longer.
May beNULL or the empty string to indicate no label is desired.

isDichotomy Nonzero if the variables in the set are coded as dichotomies, zero
otherwise.

countedValue The counted value. Necessary whehichotomy is nonzero and
ignored otherwise. Note that the value is specified asgint, not
adouble.

varNames Array of null-terminated strings containing the names of the vari-
ables in the set. All variables in the list must be numeric. Case is
immaterial.

numvars Number of variables in the list (ivarNames). Must be at least two.

Returns

If all goes well, adds the multiple rpense set to the dictionary and returns zero
(SPSS_OK) or negative (a warning). Otherwise, returns a positive error code and does
not add anything to the multiple nesnse sets already defined, if any.

Error Code Description

SPSS_OK No error

SPSS_EXC_LENG60 Only the first 60 characters of the label were used
(warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

121

SPSS_NO_VARIABLES
SPSS_INVALID_MRSETNAME
SPSS_DUP_MRSETNAME
SPSS_INVALID_MRSETDEF

SPSS_INVALID_VARNAME
SPSS_VAR_NOTFOUND

SPSS_NUME_EXP
SPSS_NO_MEMORY

spssCloseAppend

int spssCloseAppend (int handle)

Description

SPSS Input/Output DLL

Fewer than two variables in list
The multiple response set name is invalid
The multiple response set name is a duplicate

Existing multiple response set definitions are
invalid

One or more variable names in list are invalid

One or more variables in list were not found in
dictionary

At least one variable in the list is not numeric

Insufficient memory to store the definition

This function closes the data file associated vhitihale, which must have been opened
for appending cases usisgssOpenAppend. The file handlehandle becomes invalid
and no further operations can be performed using it.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code

SPSS_OK
SPSS_INVALID_HANDLE
SPSS_OPEN_RDMODE
SPSS_FILE_WERROR

Description

No error

The file handle is not valid

File is open for reading, not appending, cases

File write error

122

Appendix A
Example
#include "spssdio.h"
void func()
int fH; /* file handle */
int error; /* error code */
error = spssOpenAppend("bank.sav", &fH);
error = spssCloseAppend(fH);
/* Handle fH is now invalid */
}
See alsspssOpenAppend
spssCloseRead

int spssCloseRead (int handle)

Description

This function closes the data file associated vhithdle, which must have been opened
for reading usingpssOpenRead. The file handlehandle becomes invalid and no
further operations can be performed using it.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE File is open for writing, not reading

123
SPSS Input/Output DLL

Example

#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */

error = spssOpenRead("bank.sav", &fH);
error = spssCloseRead(fH);

/* Handle fH is now invalid */

}
See als@pssOpenRead
spssCloseWrite

int spssCloseWrite (int handle)

Description

This function closes the data file associated vhitihale, which must have been opened
for writing usingspssOpenWrite. The file handlehandle becomes invalid and no further
operations can be performed using it.

Parameter Description
handle Handle to the data file
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing
SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-

ten with spssCommitHeader

SPSS_FILE_ WERROR File write error

124
Appendix A

Example
SeespssSetValueNumeric

See als®pssOpenWrite

spssCommitCaseRecord

int spssCommitCaseRecord (int handle)

Description

This function writes a case to the data file specified byrhedle. It must be called
after setting the values of variablesdiighspssSetvalueNumeric and

spssSetValueChar. Any variables left unset will get the system-missing value if they are
numeric and all blanks if they are strings. UnlegssCommitCaseRecord is called, the
case will not be written out.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing
SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-

ten with spssCommitHeader

SPSS_FILE_ WERROR File write error

125
SPSS Input/Output DLL

Example

SeespssSetValueNumeric

See alsspssSetValueNumericspssSetValueChar

spssCommitHeader

int spssCommitHeader (int handle)

Description

This function writes the data dictionary to the data file associated heitlle. Before
any case data can be written, the dictionary must be committed; once the dictionary has
been committed, no further changes can be made to it.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader.

SPSS_DICT_EMPTY No variables defined in the dictionary.

SPSS_FILE_ WERROR File write error. In case of this error, the file associated
with handle is closed andiandle is no longer valid.

SPSS_NO_MEMORY Insufficient memory.

SPSS_INTERNAL_VLABS Internal data structures of the DLL are invalid. This

signals an error in the DLL.

126

Appendix A
Example
#include "spssdio.h"
void func()
{)
int fH; /* file handle */
int error; /* error code */
error = spssOpenWrite("data.sav", &fH);
J* Create some variables */
error = spssSetVarName(fH, "AGE", SPSS_NUMERIC);
/* Label variables -- Not required but useful */
error = spssSetVarLabel(fH, "AGE", "Age of the Employee");
/* Done with dictionary definition; commit dictionary */
error = spssCommitHeader(fH);
/* Handle errors... */
}
spssConvertDate

int spssConvertDate (int day, int month, int year, double *spssDate)

Description

This function converts a Gregorian date expressed as day-month-year to the internal
SPSS date format. The time portion of the date variable is set to 0:00. To set the time
portion of the date variable to another value, sigsConvertTime and add the resulting
value to*spssDate. Dates before October 15, 1582, are considered invalid.

Parameter Description

day Day of month (1-31)

month Month (1-12)

year Year in full (94 means 94 A.D.)

spssDate Pointer to date in internal SPSS format

127

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_DATE Invalid date
Example

#include "spssdio.h"

void func()

. .
int fH; /* file handle */
int error; /* error code */
double VvH; /* variable handle */
double sDate; /* SPSS date */
double sTime; /* SPSS time */

error = spssOpenWrite("data.sav", &fH);

/* Create a numeric variable and set its print format

** to DATETIME28.4

*/

error = spssSetVarName(fH, "TIMESTMP", SPSS_NUMERIC);

error =
spssSetVarPrintFormat(fH, TIMESTMP",SPSS_FMT_DATE_TIME 4, 28);

/* Get variable handle for TIMESTMP */
error = spssGetVarHandle(fH, "TIMESTMP", &vH);

);' Set value of TIMESTMP for first case to May 9, 1948,

** 10:30 AM. Do this by first using spssConvertDate to get
** a date value equal to May 9, 1948, 0:00 and adding to it
** a time value for 10:30:00.

error = spssConvertDate(9, 5, 1948, &sDate);

)’t Note that the seconds value is double, not int */
error = spssConvertTime(OL, 10, 30, 0.0, &sTime);

/* Set the value of the date variable */
error = spssSetValueNumeric(fH, vH, sDate+sTime);

}

See alsspssConvertTime

128
Appendix A

spssConvertSPSSDate

int spssConvertSPSSDate (int *day, int *month, int *year, double spssDate)

Description

This function converts the date (as distinct from time) portion of a value in internal
SPSS date format to Gregorian style.

Parameter Description

day Pointer to day of month value
month Pointer to month value

year Pointer to year value
spssDate Date in internal SPSS format

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_INVALID_DATE The date valuegpssDate) is hegative

129

Example

#include <stdio.h>
#include "spssdio.h"

void func()

t .
int fH; /* file handle */
int error; /* error code */
int day, month, year; /* date components */
int hour, min; /* time components */
long jday; /* Julian day */
double sec; /* seconds component*/
double vH /* variable handle */

double sDate; /* SPSS date+time */

error = spssOpenRead("myfile.sav", &fH);
)’t Get handle for TIMESTMP, a date variable */
error = spssGetVarHandle(fH, "TIMESTMP" &vH);

/* Read first case and print value of TIMESTMP */
error = spssReadCaseRecord(fH);

é'rror = spssGetValueNumeric(fH, vH, &sDate);

error = spssConvertSPSSDate(&day, &month, &year, sDate);
7 We ignore jday, day number since Oct. 14, 1582 */
error =

spssConvertSPSSTime(&jday, &hour, &min, &sec, sDate);

Hrintf("Month/Day/Year: %d/%d/%d, H:M:S: %d:%d:%g\n",
month, day, year, hour, min, sec);

SPSS Input/Output DLL

130
Appendix A

spssConvertSPSSTime

int spssConvertSPSSTime
(long *day, int *hour, int *minute, double *second, double spssTime)

Description

This function breaks a value in internal SPSS date format into a day number (since
October 14, 1582) plus the hour, minute, and second values. Note that the seconds
value is stored in a double since it may have a fractional part.

Parameter Description

day Pointer to day count value (note that the value is long)
hour Pointer to hour of day

minute Pointer to minute of the hour

second Pointer to second of the minute

spssTime Date in internal SPSS format

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_TIME The date value§pssTime) is negative
Example

SeespssConvertSPSSDate

spssConvertTime

int spssConvertTime (long day, int hour, int minute, double second, double *spssTime)

131

SPSS Input/Output DLL

Description

This function converts a time given as day, hours, minutes, and seconds to the internal
SPSS format. The day value is the number of days since October 14, 1582, and is
typically zero, especially when this function is used in conjunction with
spssConvertDate. Note that the seconds value is stored in a double since it may have a
fractional part.

Parameter Description

day Day (non-negative; note that the value is long)

hour Hour (0-23)

minute Minute (0-59)

second Seconds (non-negative and less than 60)

spssTime Pointer to time in internal SPSS format
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_INVALID_TIME Invalid time
Example
SeespssConvertDate

See alsspssSetValueNumeric

spssCopyDocuments

int spssCopyDocuments (int fromHandle, int toHandle)

132
Appendix A

Description

This function copies stored documents, if any, from the file associate dmwitttandle

to that associated wittoHandle. The latter must be open for output. If the target file
already has documents, they are discarded. If the source file has no documents, the
target will be set to have none, too.

Parameter Description

fromHandle Handle to the file documents are to be copied from.

toHandle Handle to the file documents are to be copied to. Must be open for
output.

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE At least one handle is not valid

SPSS_OPEN_RDMODE The target file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called for the
target file

spssFreeDateVariables

int spssFreeDateVariables (long* datelnfo)

Description

This function is called to return the memory allocatecsbysGetDateVariables.
Parameter Description

datelnfo Vector of date variable indexes

133
SPSS Input/Output DLL

Returns
Always returnssPSS_OK indicating success.

See alsepssGetDateVariables

spssFreeMultRespDefs

int spssFreeMultRespDefs(char *mrespDefs)

Description

This function releases the memory which was acquirespbyGetMultRespDefs.

Parameter Description
mrespDefs ASCII string containing the definitions
Returns

The function always succeeds and always ret&msS_OK.
See alsepssGetMultRespDefs
spssFreeVarCValuelabels

int spssFreeVarCValuelLabels (char **values, char **labels, int numLabels)

Description

This function frees the two arrays and the value and label strings allocated on the heap
by spssGetvarCValueLabels.

Parameter Description
values Array of pointers to values returned bygssGetVarCValueLabels
labels Array of pointers to labels returned BpssGetvVarCValueLabels

numLabels Number of values or labels returned $yssGetvVarCValueLabels

134
Appendix A

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_CANNOT_FREE Unable to free because arguments are illegal or

inconsistent (for example, negatimemLabels)

Example
SeespssGetVarNValuelLabels

See alsspssFreeVarCValuelLabels

spssFreeVariableSets

int spssFreeVariableSets (char *varSets)

Description

This function is called to return the memory allocatecshysGetVariableSets.
Parameter Description

varSets The string defining the variable sets

Returns
Always returnsSPSS_OK indicating success.

See alsspssGetVariableSets

135
SPSS Input/Output DLL

spssFreeVarNValuelabels

int spssFreeVarNValuelLabels (double *values, char **labels, int numLabels)

Description

This function frees the two arrays and the label strings allocated on the heap by

spssGetVarNValuelLabels.
Parameter Description
values Array of values returned bypssGetVarNValueLabels
labels Array of pointers to labels returned BpssGetVarNValueLabels
numLabels Number of values or labels returned $yssGetVarNValueLabels
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_CANNOT_FREE Unable to free because arguments are illegal or

inconsistent (for example, negatimemLabels)

Example
SeespssGetVarNValuelLabels

See alsspssFreeVarCValuelLabels

spssFreeVarNames

int spssFreeVarNames (char **varNames, int *varTypes, int numVars)

136
Appendix A

Description

This function frees the two arrays and the name strings allocated on the heap by

spssGetVarNames.
Parameter Description
varNames Array of pointers to names returned byyssGetvVarNames
varTypes Array of variable types returned kypssGetvVarNames
numvars Number of variables returned BpssGetvVarNames
Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_CANNOT_FREE Unable to free because arguments are illegal or

inconsistent (for example, negatiwemVars)

Example

SeespssGetVarNames

spssGetCaseSize

int spssGetCaseSize (int handle, long *caseSize)

Description

This function reports the size of a raw case record for the file associatedhavitite.
The case size is reported in bytes and is meant to be used in conjunction with the low-
level case input/output procedurgsswholeCaseln andspssWholeCaseOut.

Parameter Description
handle Handle to the data file

caseSize Pointer to size of case in bytes

137
SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_DICT_NOTCOMMIT The file is open for output, and the dictionary has

not yet been written witlipssCommitHeader

Example
SeespssWholeCaseln

See alsspssWholeCaselnspssWholeCaseOut

spssGetCaseWeightVar

int spssGetCaseWeightVar (int handle, const char *varName)

Description

This function reports the name of the case weight variable. The name is copied to the
buffer pointed to byarName as a null-terminated string. Since a variable name can be
up to 8 characters in length, the size of the buffer must be at least 9.

Parameter Description

handle Handle to the data file

varName Pointer to the buffer to hold name of the case weight variable
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

138

Appendix A

Error Code
SPSS_OK
SPSS_NO_CASEWGT

SPSS_INVALID_HANDLE
SPSS_INVALID_CASEWGT

Example

#include <stdio.h>
#include "spssdio.h"

void func()
.
int fH;
int error;

char caseWeight[9];

Description
No error.

A case weight variable has not been defined for this
file (warning).

The file handle is not valid.

The given case weight variable is invalid. This error

signals an internal problem in the implementation
of the DLL and should never occur.

/* file handle */
/* error code */

/* case weight variable */

error = spssOpenRead("bank.sav", &fH);

/* Get and print the case weight variable of this file */
error = spssGetCaseWeightVar(fH, caseWeight);

if (error == SPSS_NO_CASEWGT)
printf("The file is unweighted.\n");
else if (error == SPSS_OK)

printf("The case weight variable is: %s\n", caseWeight);

else /* Handle error */

spssGetCompression

int spssGetCompression (int handle, int *compSwitch)

Description

This function reports the compression attribute of an SPSS data file.

Parameter Description
handle Handle to the data file.
compSwitch Pointer to compression attribute. Upon retursgympSwitch is 1 if

the file is compressed; 0 otherwise.

139
SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
Example

#include <stdio.h>
#include "spssdio.h"

void func()

t .
int fH; /* file handle */
int error; /* error code */
int compSwitch; /* compression switch */

error = spssOpenRead("bank.sav", &fH);

/* Print whether the data file is compressed. */
error = spssGetCompression(fH, &compSwitch);
i{f (error == SPSS_OK)

printf("File is ");

if (compSwitch)

printf(“compressed.\n");

else
printf("uncompressed.\n");

spssGetDateVariables

int spssGetDateVariables (int handle, int *numofElements, long **datelnfo)

140
Appendix A

Description

This function reports the Trends date variable information, if any, in an SPSS data file.
It places the information in a dynamically allocated long array, seisiofElements to

the number of elements in the array, and gétseinfo to point to the array. The caller

is expected to free the array by callisgssFreeDateVariables when it is no longer

needed. The variable information is copied directly from record 7, subtype 3. Its first six
elements comprise the “fixed” information, followed by a sequence of one or more
three-element groups.

Parameter Description
handle Handle to the data file
numofElements Number of elements in allocated array

datelnfo Pointer to first element of the allocated array

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_NO_DATEINFO There is no Trends date variable information in the

file (warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_NO_MEMORY Insufficient memory

141
SPSS Input/Output DLL

Example

#include <stdio.h>
#include <stdlib.h>
#include "spssdio.h"

void func()

{)
int fH; /* file handle */
int numbD; /* number of elements */
long *datelnfo; /* pointer to date variable info. */

error = spssOpenRead("bank.sav", &fH);

/* Get & print TRENDS date variables info. */
error = spssGetDateVariables(fH, &numD, &datelnfo);
if (error == SPSS_NO_DATEINFO)

printf("No TRENDS information.\n");

else if (error == SPSS_OK)

{
if (numD < 6 || numD%3 != 0)
/* Should never happen */
printf("Date info format error.\n");
free(datelnfo);
return;
[*Print the first six elements followed by groups of three */

¥ Remember to free array */
spssFreeDateVariables(datelnfo);

}
See als@pssSetDateVariables, spssFreeDateVariables

spssGetDEWFirst

int spssGetDEWFirst (const int handle, void *pData, const long maxData, long *nData)

Description

The client can retrieve DEW information (file information that is private to the SPSS
Data Entry product) from a file in whatever increments are convenient. The first such
increment is retrieved by callingpssGetDEWFirst, and subsequent segments are
retrieved by callingspssGetDEWNext as many times as necessary. As with
spssGetDEWInfo, spssGetDEWFirst will return SPSS_NO_DEW if the file was written

with a byte order that is the reverse of that of the host.

142

Appendix A

Parameter
handle
pData
maxData

nData

Returns

Description

Handle to the data file
Returned as data from the file
Maximum bytes to return

Returned as number of bytes returned

Returns one of the following codes. Success is indicated by sess(OK), errors by
positive values, and warnings, if any, by negative values.

Error Code
SPSS_OK
SPSS_NO_DEW

Description
No error

File contains no DEW information (warning)

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_FILE_BADTEMP Error accessing the temporary file

See alsepssGetDEWInfg spssGetDEWNext

spssGetDEWiInfo

int spssGetDEWInfo (const int handle, long *pLength, long *pHashTotal)

Description

This function can be called before actually retrieving DEW information (file

information that is private to the SPSS Data Entry product) from a file, to obtain some
attributes of that information—specifically its length in bytes and its hash total. The
hash total is, by convention, contained in the last four bytes to be written. Because it is
not cognizant of the structure of the DEW information, the 1/O DLL is unable to correct
the byte order of numeric information generated on a foreign host. As a result, the
DEW information is discarded if the file has a byte order that is the reverse of that of

the host, and calls tepssGetDEWInfo will return SPSS_NO_DEW.

143
SPSS Input/Output DLL

Parameter Description

handle Handle to the data file

pLength Returned as the length in bytes

pHashTotal Returned as the hash total
Returns

Returns one of the following codes. Success is indicated by 3@®5_0K), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_NO_DEW File contains no DEW information (warning)
spssGetDEWNext

int spssGetDEWNext (const int handle, void *pData, const long maxData, long *nData)

Description

The client can retrieve DEW information (file information that is private to the SPSS
Data Entry product) from a file in whatever increments are convenient. The first such
increment is retrieved by callingpssGetDEWFirst, and subsequent segments are
retrieved by callingspssGetDEWNext as many times as necessary. As with
spssGetDEWInfo, spssGetDEWFirst will return SPSS_NO_DEW if the file was written

with a byte order that is the reverse of that of the host.

Parameter Description

handle Handle to the data file

pData Returned as data from the file
maxData Maximum bytes to return

nData Returned as number of bytes returned

144
Appendix A

Returns

Returns one of the following codes. Success is indicated by 3&®5_0OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_DEW_NOFIRST spssGetDEWFirst was never called
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_FILE_BADTEMP Error accessing the temporary file

See alsepssGetDEWInfq spssGetDEWFirst

spssGetEstimatedNofCases

int spssGetEstimatedNofCases(const int handle, long *caseCount)

Description

Although not strictly required for direct access input, this function helps in reading
SPSS data files from releases earlier than 6.0. Some of these data files did not contain
number of cases information, aggssGetNumberofCases will return —1 cases. This
function will return a precise number for uncompressed files and an estimate (based on
overall file size) for compressed files. It cannot be used on files open for appending

data.
Parameter Description
handle Handle to the data file
caseCount Returned as estimatedof cases
Returns

Returns one of the following codes. Success is indicated by sess(OK), errors by
positive values, and warnings, if any, by negative values.

145
SPSS Input/Output DLL

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_WRMODE The file is open for writing, not reading
SPSS_FILE_RERROR Error reading the file

See alsepssGetNumberofCases

spssGetldString

int spssGetldString (int handle, char *id)

Description

This function copies the file label of the SPSS data file associatednaittie into the
buffer pointed to byid. The label is at most 64 characters long and null-terminated.
Thus, the size of the buffer should be at least 65. If an input data file is associated with
the handle, the label will be exactly 64 characters long, padded with blanks as

necessary.
Parameter Description
handle Handle to the data file
id File label buffer
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_INVALID_HANDLE The file handle is not valid

146

Appendix A
Example
#include <stdio.h>
#include "spssdio.h"
void func()
int fH; /* file handle */
int error; /* error code *
char id[65]; [* file label *
error = spssOpenRead("bank.sav", &fH);
error = spssGetldString(fH, id);
if (error == SPSS_OK)
printf("File label: %s\n", id);
}
spssGetMultRespDefs

int spssGetMultRespDefs (const int handle, char **mrespDefs)

Description

This function retrieves the definitions from an SPSS data file. The definitions are
stored as a null-terminated ASCII string that is very similar to that containing the
variable set definitions. The memory allocated by this function to contain the string
must be freed by callingpssFreeMultRespDefs. If the file contains no multiple
response defitions, *mrespDefs is set toNULL, and the function returns the warning
codeSPSS_NO_MULTRESP.

Parameter Description
handle Handle to the data file

mrespDefs Returned as a pointer to a string

147
SPSS Input/Output DLL

Returns

Returns one of the following codes. Success is indicated by 3@®5_0K), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_MULTRESP No definitions on the file (warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_NO_MEMORY Insufficient memory to contain the string

See alsepssFreeMultRespDefs

spssGetNumberofCases

int spssGetNumberofCases (int handle, long *numofCases)

Description

This function reports the number of cases present in a data file open for reading.

Parameter Description

handle Handle to the data file

numofCases Pointer to number of cases
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE File is open for writing, not reading

148
Appendix A

Example

#include <stdio.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
long count; /¥ Number of cases */

error = spssOpenRead("bank.sav", &fH);

/* Get & print the number of cases present in the file. */
error = spssGetNumberofCases(fH, &count);

if (error == SPSS_OK)

printf("Number of cases: %ld\n");

spssGetNumberofVariables

int spssGetNumberofVariables (int handle, long *numVars)

Description

This function reports the number of variables present in a data file.

Parameter Description

handle Handle to the data file

numvars Pointer to number of variables
Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_DICT_NOTCOMMIT Dictionary has not been committed

SPSS_INVALID_FILE Data file contains no variables

149

Example

SPSS Input/Output DLL

#include <stdio.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code *
long count; /* Number of variables*/

error = spssOpenRead("bank.sav", &fH);

/* Get & print the number of variables present in the file. */
error = spssGetNumberofVariables(fH, &count);

if (error == SPSS_OK)

printf("Number of variables: %ld\n");

spssGetReleaselnfo

int spssGetReleaselnfo (int handle, int relinfo[])

Description

This function reports release- and machine-specific information about the file
associated witthandle. The information consists of an array of eigittvalues copied

from record type 7, subtype 3 of the file, and is useful primarily for debugging. The
array elements are, in order, release number (index 0), release subnumber (1), special
release identifier number (2), machine code (3), floating-point representation code (4),
compression scheme code (5), big/little-endian code (6), and character representation

code (7).
Parameter Description
handle Handle to the data file.
relinfo Array of int in which release- and machine-specific data will be
stored. This array must have at least eight elements.
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values (with one exception noted below).

150

Appendix A

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS _NO_TYPE73 There is no type 7, subtype 3 record present. This
code should be regarded as a warning even though
it is positive. Files without this record are valid.

Example
#include <stdio.h>
#include "spssdio.h"
void func()
int fH; /* file handle */
int error; /* error code */
int rellnfo[8]; /* release info */
error = spssOpenRead("bank.sav", &fH);
” Get & print release and machine-specific info. */
error = spssGetReleaselnfo(fH, rellnfo);
if (error == SPSS_OK)
printf("Release & machine information:\n");
int i;
for (i = 0; i < 8; ++i)
printf(" Element %d: %d\n", i, rellnfo[i]);
}
spssGetSystemString

int spssGetSystemString (int handle, char *sysName)

Description

This function returns the name of the system under which the file was created. It is a
40-byte blank-padded character field corresponding to the last 40 bytes of record type
1. Thus, in order to accommodate the information, the paramgiatme must be at

least 41 bytes in length plus the terminating null character.

Parameter Description
handle Handle to the data file

sysName The originating system name

151
SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
Example

#include <stdio.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
char sysName[41]; /* orignating system */

error = spssOpenRead("bank.sav", &fH);

error = spssGetldString(fH, sysName);
if (error == SPSS_OK)
printf("Originating System: %s\n", sysName);

}

spssGetTextinfo

int spssGetTextInfo (int handle, char *textinfo)

Description

This function places the text data created by TextSmart as a null-terminated string in
the user-supplied buffeextinfo. The buffer is assumed to be at least 256 characters
long; the text data may be up to 255 characters long. If text data are not present in the
file, the first character inextinfo is set toNULL.

Parameter Description
handle Handle to the data file

textinfo Buffer for text data

152
Appendix A

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
spssGetTimeStamp

int spssGetTimeStamp (int handle, char *fileDate, char *file Time)

Description

This function returns the creation date of the file as recorded in the file itself. The
creation date is a null-terminated 9-byte character fieledimmm yy format (27 Feb

96), and the receiving field must be at least 10 bytes in length. The creation time is a
null-terminated 8-byte character fieldhih:mm:ss format (13:12:15), and the receiving
field must be at least 9 bytes in length.

Parameter Description

handle Handle to the data file
fileDate File creation date
fileTime File creation time

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_INVALID_HANDLE The file handle is not valid

153
SPSS Input/Output DLL

spssGetValueChar

int spssGetValueChar (int handle, double varHandle, char *value, int valueSize)

Description

This function gets the value of a string variable for the current case, which is the case
read by the most recent call $pssReadCaseRecord. The value is returned as a null-
terminated string in the caller-provided bufietiue; the length of the string is the

length of the string variable. The argumemtueSize is the allocated size of the buffer
value, which must be at least the length of the variable plus 1.

Parameter Description
handle Handle to the data file
varHandle Handle of the variable
value Buffer for the value of the string variable
valueSize Size ofvalue
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_WRMODE File is open for writing, not reading.
SPSS_INVALID_CASE Current case is not valid. This may be because no

spssReadCaseRecord calls have been made yet or
because the most recent call failed with error or en-
countered the end of file.

SPSS_STR_EXP Variable associated with the handle is numeric.
SPSS_BUFFER_SHORT Buffer value is too short to hold the value.

154

Appendix A

Example

#include <stdio.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
int numvV; /* number of variables */
int *typesV; /* variable types */
char **namesV; /* variable names */
double handlesV[100]; /* assume no more than 100 variables */
char cValue[256]; /* long enough for any string variable */
long nCases; /* number of cases
long casesPrint; /* number of cases to print */
long case; /* case index */
double nValue; /* numeric value */
int i; /* variable index */

error = spssOpenRead("bank.sav", &fH);

/* Get variable names and types */
error = spssGetVarNames(fH, &numV, &namesV, &typesV);

if (humv > 100)

printf("Too many variables; increase program capacity.\n");
spssFreeVarNames(namesV, typesV, numV);
return;

/* Get & store variable handles */
for (i = 0; i < numV; ++i)

error = spssGetVarHandle(fH, namesV][i], &handlesVIi]);
if (error '= SPSS_OK) ...

/* Get the number of cases */
error = spssGetNumberofCases(fH, &nCases);

/* Print at most the first ten cases */
casesPrint = (nCases < 10) ? nCases : 10;
for (case = 1; case <= casesPrint; ++case)

error = spssReadCaseRecord(fH);

b“rintf("Case %Id\n", case);
for (i = 0; i < numV; ++l)

{i{f (typesV[i] == 0)

/* Numeric */

error = spssGetValueNumeric(fH, handlesV[i], &nValue);
if (error == SPSS_OK)

printf(* %Id\n", nValue);

else ...

else

{
/* String */
error = spssGetValueChar(fH, handlesV[i], cValue, 256);
if (error == SPSS_OK)

printf(* %s\n", cValue);

else ...

}

}

/* Free the variable names & types */
spssFreeVarNames(namesV, typesV, numV);

155

SPSS Input/Output DLL

spssGetValueNumeric

int spssGetValueNumeric (int handle, double varHandle, double *value)

Description

This function gets the value of a numeric variable for the current case, which is the case
read by the most recent call $pssReadCaseRecord.

Parameter Description

handle Handle to the data file

varHandle Handle to the variable

value Pointer to the value of the numeric variable
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_WRMODE File is open for writing, not reading.
SPSS_INVALID_CASE Current case is not valid. This may be because no

spssReadCaseRecord calls have been made yet or
because the most recent call failed with error or en-
countered the end of file.

SPSS_NUME_EXP Variable associated with the handle is not numeric.

Example

SeespssGetValueChar

156
Appendix A

spssGetVarAlignment

int spssGetVarAlignment (int handle, const char *varName, int *alignment)

Description

This function reports the value of the alignment attribute of a variable.

Parameter Description

handle Handle to the data file.

varName Variable name.

alignment Pointer to alignment. Set t8PSS_ALIGN_LEFT,

SPSS_ALIGN_RIGHT, or SPSS_ALIGN_CENTER.

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarCMissingValues

int spssGetVarCMissingValues
(int handle, const char *varName, int *missingFormat,
char *missingVall, char *missingVal2, char *missingVal3)

157

SPSS Input/Output DLL

Description

This function reports the missing values of a short string variable. The value of
*missingFormat will be in the range 0-3, indicating the number of missing values. The
appropriate number of missing values is copied to the bufféssingval1,

missingVal2, andmissingVal3. The lengths of the null-terminated missing value strings
will be the length of the short string variable in question. Since the latter can be at most
8 characters long, 9-character buffers are adequate for any short string variable.

Parameter Description

handle Handle to the data file

varName Variable name

missingFormat Pointer to missing value format code

missingVall Buffer for first missing value

missingVal2 Buffer for second missing value

missingVal3 Buffer for third missing value
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist
SPSS_STR_EXP The variable is numeric

SPSS_SHORTSTR_EXP The variable is a long string (length > 8)

158

Appendix A

Example

#include <stdio.h>
#include "spssdio.h"

void func()

int fH; /* file handle */
int error; /* error code */
int type; /* missing format type */
int numV; /* number of variables */
int *typesV; /* variable types */
char **namesV; /* variable names */
char cMiss1[9]; /* first missing value */
char cMiss2[9]; /* second missing value*/
char cMiss3[9]; /* third missing value */

error = spssOpenRead("bank.sav", &fH);

7 Print missing value information for all short string ** variables
*/

error = spssGetVarNames(fH, &numV, &namesV, &typesV);

if (error == SPSS_OK)

{

int i;
for (i = 0; i < numV; ++i)

{if (0 < typesV[i] && typesV[i] <= 8)

/* Short string variable */
error = spssGetVarCMissingValues

(fH, namesV][i], &type, cMissl, cMiss2, cMiss3);
if (error '= SPSS_OK) continue; /* Ignore error */
printf("Variable %s, missing values: ", namesV[i]);
switch (type)
{

case 0:

printf("None\n");

break;

case 1:

printf("%s\n", cMissl);

break;

case 2:

printf("%s, %s\n", cMissl, cMiss2);
break;

case 3:

printf("%s, %s, %s\n", cMissl, cMiss2, cMiss3);
break;

default: /* Should never come here */
printf("Invalid format code\n");

break;

}

spssFreeVarNames(namesV, typesV, numV);

}

See alsspssGetVarNMissingValues

159

spssGetVarColumnWidth

SPSS Input/Output DLL

int spssGetVarColumnWidth (int handle, const char *varName, int *columnWidth)

Description

This function reports the value of the column width attribute of a variable. A value of
zero is special and means that the SPSS Data Editor, which is the primary user of this
attribute, will set an appropriate width using its own algorithm.

Parameter Description

handle Handle to the data file.

varName Variable name.

columnWidth Pointer to column width. Non-negative.
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code

SPSS_OK
SPSS_INVALID_HANDLE
SPSS_INVALID_VARNAME
SPSS_VAR_NOTFOUND

spssGetVarCValuelabel

int spssGetVarCValuelLabel

Description

No error

The file handle is not valid
The variable name is not valid

A variable with the given name does not exist

(int handle, const char *varName, const char *value, char *label)

160
Appendix A

Description

This function gets the value label for a given value of a short string variable. The label
is copied as a null-terminated string into the buftgre/, whose size must be at least 61

to hold the longest possible value label (60 characters plus the null terminator). To get
value labels more than 60 characters long, usepbsGetvarCVvalueLabelLong

function.
Parameter Description
handle Handle to the data file
varName Variable name
value Short string value for which the label is wanted
label Label for the value
Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)
SPSS_NO_LABEL There is no label for the given value (warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist
SPSS_STR_EXP The variable is numeric
SPSS_SHORTSTR_EXP The variable is a long string (Ilength > 8)

SPSS_EXC_STRVALUE The value is longer than the length of the variable

161
SPSS Input/Output DLL

Example

#include <stdio.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
char vLab[61]; /* label for the value */

error = spssOpenRead("myfile.sav", &fH);

/* Get and print the label for value "IL" of variable STATE */
error = spssGetVarCValueLabel(fH, "STATE", "IL", vLab);

if (error == SPSS_OK)

printf("Value label for variable STATE, value VIL\": %s\n", vLab);

}

spssGetVarCValuelabelLong

int spssGetVarCValuelLabellLong
(int handle, const char *varName, const char *value, char *labelBuff,
int lenBuff, int *lenLabel)

Description

This function returns a null-terminated value label corresponding to one value of a
specified variable whose values are short strings. The function permits the client to
limit the number of bytes (including the null terminator) stored and returns the number
of data bytes (excluding the null terminator) actually stored. If an error is detected, the
label is returned as a null string, and the length is returned as 0.

Parameter Description

handle Handle to the data file

varname Null-terminated variable name

value Null-terminated value for which label is requested
labelBuff Returned as null-terminated label

lenBuff Overall size oflabelBuffin bytes

lenLabel Returned as bytes stored excluding terminator

162

Appendix A

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code

SPSS_OK
SPSS_NO_LABELS
SPSS_NO_LABEL
SPSS_INVALID_HANDLE
SPSS_INVALID_VARNAME
SPSS_VAR_NOTFOUND
SPSS_STR_EXP
SPSS_SHORTSTR_EXP
SPSS_EXC_STRVALUE

spssGetVarCValuelabels

int spssGetVarCValuelLabels

Description

No error

The variable has no labels (warning)

The given value has no label (warning)

The file handle is not valid

The variable name is not valid

A variable with the given name does not exist
The specified variable has numeric values
The specified variable has long string values

The specified value is longer than the variable’s
data

(int handle, const char *varName, char ***values, char ***labels, int *numLabels)

Description

This function gets the set of labeled values and associated labels for a short string
variable. The number of values is returnedasmLabels. Values are stored into an
array of*numLabels pointers, each pointing toear string containing a null-
terminated value, antvalues is set to point to the first element of the array. Each value
string is as long as the variable. The corresponding labels are structured as an array of
*numLabels pointers, each pointing todhar string containing a null-terminated label,
and*abels is set to point to the first element of the array.

The two arrays and the value and label strings are allocated on the heap. When they
are no longer needeshssFreevarCValueLabels should be called to free the memory.

163

SPSS Input/Output DLL

Parameter Description

handle Handle to the data file

varName Variable name

values Pointer to array of pointers to values

labels Pointer to array of pointers to labels

numLabels Pointer to number of values or labels
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist
SPSS_STR_EXP The variable is numeric
SPSS_SHORTSTR_EXP The variable is a long string (length > 8)

SPSS_NO_MEMORY Insufficient memory

164
Appendix A

Example

#include <stdio.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
int numL; /* number of values or labels */
char **cValuesL; /* values */
char **labelsL; /* labels */

error = spssOpenRead("'myfile.sav", &fH);
* Get and print value labels for short string variable STATE */
error = spssGetVarCValuelLabels(fH, "STATE",

&cValuesL, &labelsL, &numL);
if (error == SPSS_OK)
{

int i;

printf("Value labels for STATE\n");

for (i = 0; i < numL; ++i)

printf("Value: %s, Label: %s\n", cValuesL][i], labelsL[i]);

/* Free the values & labels */
spssFreeVarCValueLabels(cValuesL, labelsL, numL);

}

See alsspssFreeVarCValuelLabels

spssGetVarHandle

int spssGetVarHandle (int handle, const char *varName, double *varHandle)

Description

This function returns a handle for a variable, which can then be used to read or write
(depending on how the file was opened) values of the variablanidle is associated
with an output file, the dictionary must be written wighssCommitHeader before

variable handles can be obtained siasGetvarHandle.

Parameter Description

handle Handle to the data file.

varName Variable name.

varHandle Pointer to handle for the variable. Note that the varidizedle is

adouble, and notint or long.

165
SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten with spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NO_MEMORY No memory available

Example

SeespssGetValueChar

spssGetVariableSets

int spssGetVariableSets (int handle, char **varSets)

Description

This function reports the variable sets information in the data file. Variable sets
information is stored in a null-terminated string and a pointer to the string is returned
in *varSets. Since the variable sets string is allocated on the heap, the caller should free
it by calling spssFreeVvariableSets when it is no longer needed.

Parameter Description
handle Handle to the data file

varSets Pointer to pointer to variable sets string

166
Appendix A

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_NO_VARSETS There is no variable sets information in the file
(warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_NO_MEMORY Insufficient memory
Example

#include <stdio.h>
#include <stdlib.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
char *vSets; [* ptr to variable sets info.*/

error = spssOpenRead("bank.sav", &fH);

* Get & print variable sets information. */
error = spssGetVariableSets(fH, &vSets);

if (error == SPSS_NO_VARSETS)

printf("No variable sets information in file.\n");
else if (error == SPSS_OK)

/* In real life, we would format the variable sets
** information better
*/

printf("Variable sets:\n%s", vSets);
/* Remember to free variable set string */
spssFreeVariableSets(vSets);

}

See alsspssFreeVariableSets

167
SPSS Input/Output DLL

spssGetVarinfo

int spssGetVarlnfo (int handle, int iVar, char *varName, int *varType)

Description

This function gets the name and type of one of the variables present in a data file. It
serves the same purposesassGetvarNames but returns the information one variable

ata time and, therefore, can be passed to a Visual Basic program. The storage to receive
the variable name must be at least 9 bytes in length because the name is returned as a
null-terminated string. The type code is an integer in the range 0-255, 0 indicating a
numeric variable and a positive value indicating a string variable of that size.

Parameter Description

handle Handle to the data file

iVar Zero-origin variable number

varName Returned as the variable name

varType Returned as the variable type
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_FILE The data file contains no variables
SPSS_NO_MEMORY Insufficient memory

SPSS_VAR_NOTFOUND Parametefvaris invalid

168

Appendix A
Example

#include <stdio.h>

#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
long count; /* number of variables */
int *typeV; /* variable type */
char *nameV, /* variable name */
error = spssOpenRead("bank.sav", &fH);
/* Get number of variables */
error = spssGetNumberofVariables(fH, &count);
if (error == SPSS_OK)
/* Get & print variable names and types */
int i;
for (i = 0; i < count; ++i)
{error = spssGetVarinfo(fH, i, nameV, typeV);
if (error == SPSS_OK)
printf("Variable name: %s, type: %d\n", nameV, typeV);

}
}
spssGetVarLabel

int spssGetVarLabel (int handle, const char *varName, char *varLabel)

Description

This function copies the label of variablarname into the buffer pointed to by

varLabel. Since the variable label is at most 120 characters long and null-terminated,
the size of the buffer should be at least 121. To get labels more than 120 characters
long, use thespssGetVvarLabelLong function.

Parameter Description
handle Handle to the data file
varName Variable name

varLabel Variable label buffer

169
SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABEL The variable does not have a label (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist
Example

#include <stdio.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
char vLabel[121]; /* variable label */

error = spssOpenRead("bank.sav", &fH);

/* Get and print the label of the variable AGE */
error = spssGetVarlLabel(fH, "AGE", vLabel);

if (error == SPSS_OK)

printf("Variable label of AGE: %s\n", vLabel);

}

spssGetVarLabellong

int spssGetVarLabelLong (int handle, const char *varName, char *labelBuff,
int lenBuff, int *lenLabel)

Description

This function returns the null-terminated label associated with the specified variable
but restricts the number of bytes (including the null terminator) returneéshBuff

bytes. This length can be conveniently specifiediasof(labelBuff). The function also
returns the number of data bytes (this time excluding the null terminator) stored. If an
error is detected, the label is returned as a null string, and the length is returned as 0.

170

Appendix A

Parameter
handle
varName
labelBuff
lenBuff

lenLabel

Returns

Description

Handle to the data file

Null-terminated variable name

Buffer to receive the null-terminated label
Overall size oflabelBuffin bytes

Returned as bytes stored excluding terminator

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code
SPSS_OK
SPSS_NO_LABEL

Description
No error

The variable does not have a label (warning)

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarMeasurelevel

int spssGetVarMeasureLevel (int handle, const char *varName, int *measureLevel)

Description

This function reports the value of the measurement level attribute of a variable.

Parameter
handle
varName

measurelevel

Description
Handle to the data file.
Variable name.

Pointer to measurement level. Sets®SS_MLVL_NOM,
SPSS_MLVL_ORD, or SPSS_MLVL_RAT, for nominal, ordinal,
and scale (ratio), respectively.

171
SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarNMissingValues

int spssGetVarNMissingValues
(int handle, const char *varName, int *missingFormat,
double *missingVall, double *missingVal2, double *missingVal3)

Description

This function reports the missing values of a numeric variable. The value of
*missingFormat determines the interpretation ®hissingVall, *missingVvalz, and
*missingVal3. If *missingFormatisSPSS_MISS_RANGE, *missingValland*missingVal2
represent the upper and lower limits, respectively, of the rangeimiasingVal3 is not

used. If*missingFormatis SPSS_MISS_RANGEANDVAL, *missingvall and*missingVal2
represent the range anabissingVal3 is the discrete missing value.#hissingFormat is
neither of the above, it will be in the range 0-3, indicating the number of discrete missing
values present. (The macreBSS_NO_MISSVAL, SPSS_ONE_MISSVAL,
SPSS_TWO_MISSVAL, andSPSS_THREE_MISSVAL may be used as synonyms for 0-3.)

172

Appendix A
Parameter Description
handle Handle to the data file
varName Variable name
missingFormat Pointer to missing value format code
missingVall Pointer to first missing value
missingVal2 Pointer to second missing value
missingVal3 Pointer to third missing value

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

173

SPSS Input/Output DLL

Example

#include <stdio.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
int type; /* missing format type */
int numV; /* number of variables */
int *typesV; /* variable types */
char **namesV; /* variable names */
double nMiss1; [* first missing value */
double nMiss2; /* second missing value*/
double nMiss3; /* third missing value */

error = spssOpenRead("bank.sav", &fH);

J*Print missing value information for all numeric variables */
error = spssGetVarNames(fH, &numV, &namesV, &typesV);
if (error == SPSS_OK)

{

int i;
for (i = 0; i < numV; ++i)

if (typesVI[i] == 0)

/* Numeric variable */

error = spssGetVarNMissingValues

(fH, namesV[i], &type, &nMissl, &nMiss2, &nMiss3);
if (error '= SPSS_OK) continue; /* Ignore error */
printf("Variable %s, missing values: ", namesV[i]);
switch (type)

case SPSS_MISS RANGE:

printf("%e through %e\n", nMissl, nMiss2);
break;

case SPSS_MISS _RANGEANDVAL:
printf("%e through %e, %e\n", nMissl, nMiss2, nMiss3);
break;

case 0:

printf("None\n");

break;

case 1:

printf("%e\n", nMissl);

break;

case 2:

printf("%e, %e\n", nMissl, nMiss2);

break;

case 3:

printf("%e, %e, %e\n", nMissl, nMiss2, nMiss3);
break;

default: /* Should never come here */
printf("Invalid format code\n");

break;

}

spssFreeVarNames(namesV, typesV, numV);

}
See alsepssGetVarCMissingValues

174
Appendix A

spssGetVarNValuelabel

int spssGetVarNValuelLabel
(int handle, const char *varName, double value, char *label)

Description

This function gets the value label for a given value of a numeric variable. The label is
copied as a null-terminated string into the buffase/, whose size must be at least 61

to hold the longest possible value label (60 characters) plus the terminator. To get value
labels more than 60 characters long, usesgfsGetVvarNValueLabelLong function.

Parameter Description
handle Handle to the data file
varName Variable name
value Numeric value for which the label is wanted
label Label for the value
Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)
SPSS_NO_LABEL There is no label for the given value (warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

175

Example

SPSS Input/Output DLL

#include "spssdio.h"
void func()
int fH; /* file handle */
int error; /* error code */
char vLab[61]; /* label for the value */

error = spssOpenRead("bank.sav", &fH);

/* Get and print the label for value 0.0 of variable SEX */
error = spssGetVarNValueLabel(fH, "SEX", 0.0, vLab);

if (error == SPSS_OK)

printf("Value label for variable SEX, value 0.0: %s\n", vLab);

spssGetVarNValuelabellong

int spssGetVarNValuelLabelLong
(int handle, const char *varName, double value, char *labelBuff, int lenBuff, int *lenLabel)

Description

This function returns a null-terminated value label corresponding to one value of a
specified numeric variable. It permits the client to limit the number of bytes (including
the null terminator) stored and returns the number of data bytes (excluding the null
terminator) actually stored. If an error is detected, the label is returned as a null string,

and the length is returned as 0.

Returns

Parameter Description

handle Handle to the data file

varName Null-terminated variable name

value Value for which label is requested

labelBuff Returned as null-terminated label

lenBuff Overall size oflabelBuffin bytes

lenLabel Returned as bytes stored excluding terminator

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

176
Appendix A

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)
SPSS_NO_LABEL The given value has no label (warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist
SPSS_NUME_EXP The specified variable has string values

spssGetVarNValuelabels

int spssGetVarNValuelLabels
(int handle, const char *varName, double **values, char ***labels, int *numLabels)

Description

This function gets the set of labeled values and associated labels for a numeric variable.
The number of values is returned @®imLabels. Values are stored into an array of
*numLabels double elements, anttaluesis set to point to the first element of the array.
The corresponding labels are structured as an arrayuafLabels pointers, each
pointing to achar string containing a null-terminated label, afigbelsis set to point to
the first element of the array.

The two arrays and the label strings are allocated on the heap. When they are no
longer neededspssFreevarNValueLabels should be called to free the memory.

Parameter Description

handle Handle to the data file

varName Variable name

values Pointer to array of double values
labels Pointer to array of pointers to labels

numLabels Pointer to number of values or labels

177

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_NO_LABELS The variable has no labels (warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist
SPSS_NUME_EXP The variable is not numeric
SPSS_NO_MEMORY Insufficient memory

Example

#include <stdio.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
int numL; /* number of values or labels */
double *nValuesL; /* values */
char **labelsL; /* labels */

error = spssOpenRead("bank.sav", &fH);
* Get and print value labels for numeric variable SEX */
error = spssGetVarNValueLabels(fH, "SEX",
&nValuesL, &labelsL, &numlL);
if (error == SPSS_OK)
{
int i;
printf("Value labels for SEX\n");
for (i = 0; i < numL; ++i)
{
printf("Value: %g, Label: %s\n", valuesL]i], labelsL][i]);

/* Free the values & labels */
spssFreeVarNValueLabels(nValuesL, labelsL, numL);

}
See alsspssFreeVarNValuelLabels

178
Appendix A

spssGetVarNames

int spssGetVarNames (int handle, int *numVars, char ***varNames, int **varTypes)

Description

This function gets the names and types of all the variables present in a data file. The
number of variables is returned &simVars. Variable names are structured as an array
of *numvVars pointers, each pointing toghar string containing a variable name, and
*varNames is set to point to the first element of the array. Variable types are stored into
a corresponding array ahumVars in elements, anévarTypes is set to point to the first
element of the array. The type code is an integer in the range 0-255, 0 indicating a
numeric variable and a positive value indicating a string variable of that size.

The two arrays and the variable name strings are allocated on the heap. When they
are no longer needeshssFreevVarNames should be called to free the memory.

Parameter Description

handle Handle to the data file

numVars Pointer to number of variables

varNames Pointer to array of pointers to variable names
varTypes Pointer to array of variable types

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_INVALID_FILE The data file contains no variables

SPSS_NO_MEMORY Insufficient memory

179

Example

#include <stdio.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
int numV; /* number of variables */
int *typesV; /* variable types
char **namesV; /* variable names */

}

error = spssOpenRead("bank.sav", &fH);

* Get & print variable names and types */

error = spssGetVarNames(fH, &numV, &namesV, &typesV);
if (error == SPSS_OK)

{

int i;
for (i = 0; i < numV; ++i)

{
printf("Variable name: %s, type: %d\n", namesV]i, typesV[i);

/* Free the variable names & types */
spssFreeVarNames(namesV, typesV, numV);

See als@pssFreeVarNames

spssGetVarPrintFormat

int spssGetVarPrintFormat
(int handle, const char *varName, int *printType, int *printDec, int *printWid)

Description

SPSS Input/Output DLL

This function reports the print format of a variable. Format type, number of decimal
places, and field width are returned“agintType, *printDec, and*printWid, respectively.

Parameter Description

handle Handle to the data file
varName Variable name
printType

printDec

Pointer to print format type code (filgpssdio.h defines macros of

the formSPSS_FMT_... for all valid format type codes)

printWid Pointer to print format width

Pointer to number of digits after the decimal

180
Appendix A

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist
Example

#include <stdio.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
int type; /* print format type */
int dec; /* digits after decimal */
int wid; /* print format width */

error = spssOpenRead("bank.sav", &fH);

 Get & print the print format of variable AGE */

error = spssGetVarPrintFormat(fH, "AGE", &type, &dec, &wid);
if (error == SPSS_OK)

{
printf("Variable AGE, format code %d, width.dec %d.%d\n",
type, wid, dec);

spssGetVarWriteFormat

int spssGetVarWriteFormat
(int handle, const char *varName, int *writeType, int *writeDec, int *writeWid)

Description

This function reports the write format of a variable. Format type, number of decimal
places, and field width are returned agite Type, *writeDec, and *write Wid,
respectively.

181

SPSS Input/Output DLL

Parameter Description
handle Handle to the data file
varName Variable name
write Type Pointer to write format type code (filgossdio.h defines macros of
the formSPSS_FMT_... for all valid format type codes)
writeDec Pointer to number of digits after the decimal
write Wid Pointer to write format width
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code

SPSS_OK
SPSS_INVALID_HANDLE
SPSS_INVALID_VARNAME
SPSS_VAR_NOTFOUND

Example

#include <stdio.h>
#include "spssdio.h"
void func()

int fH;
int error;
int type;
int dec;
int wid;

Description

No error

The file handle is not valid
The variable name is not valid

A variable with the given name does not exist

/* file handle */
/* error code */
/* write format type */

/* digits after decimal */
/* write format width */

error = spssOpenRead("bank.sav", &fH);

” Get & print the write format of variable AGE */
error = spssGetVarWriteFormat(fH, "AGE", &type, &dec, &wid);

if (error == SPSS_OK)

{
printf("Variable AGE, format code %d, width.dec %d.%d\n",

type, wid, dec);

182
Appendix A

spssHostSysmisVal

void spssHostSysmisVal(double *missVal)

Description

This function accesses the same informatiogpsSysmisVal but returns the
information via a parameter rather than on the stack as the function result. The problem
being addressed is that not all languages return doubles from functions in the same

fashion.
Parameter Description
missval Returned as the system missing value
Returns

The function always succeeds, and there is no return code.

See als®pssSysmisVal

spssLowHighVal

void spssLowHighVal (double *lowest, double *highest)

Description

This function returns the “lowest” and “highest” values used for numeric missing value
ranges on the host system. It may be called at any time.

Parameter Description
lowest Pointer to “lowest” value
highest Pointer to “highest” value

Returns

None

183
SPSS Input/Output DLL

Example

#include "spssdio.h"

void func()
int fH; /* file handle */
int error, /* error code */

double lowest, highest;
error = spssOpenWrite("data.sav", &fH);

/¥ Create numeric variable SALARY and set range "lowest"
** through 0 as missing
*/

error = spssSetVarName(fH, "SALARY", SPSS_NUMERIC);
if (error == SPSS_OK)

{

spssLowHighVal(&lowest, &highest);

/* Last arg. is a placeholder since we are defining a range
** only

*/

error = spssSetVarNMissingValues(fH, "SALARY",
SPSS_MISS_RANGE,lowest, 0.0, 0.0);

}
}

spssOpenAppend

int spssOpenAppend (const char *fileName, int *handle)

Description

This function opens an SPSS data file for appending cases and returns a handle that
should be used for subsequent operations on the file.

Parameter Description
fileName Name of the file
handle Pointer to handle to be returned

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

184

Appendix A
Error Code Description
SPSS_OK No error
SPSS_FITAB_FULL File table full (too many open SPSS data files)
SPSS_FILE_OERROR Error opening file
SPSS_NO_MEMORY Insufficient memory
SPSS_FILE_RERROR Error reading file
SPSS_INVALID_FILE File is not a valid SPSS data file
SPSS_NO_TYPE2 File is not a valid SPSS data file (no type 2 record)
SPSS_NO_TYPE999 File is not a valid SPSS data file (missing type 999
record)
SPSS_INCOMPAT_APPEND File created on an incompatible system.
Example
#include "spssdio.h"
void func()
int fH; /* file handle */
int error; [* error code */

error = spssOpenAppend("bank.sav", &fH);
if (error == 0)

/* fH is a valid handle; process and */
I close file */

error = spssCloseAppend(fH);

else

/* Handle error*/

=
}

See alsspssCloseAppend

185
SPSS Input/Output DLL

spssOpenRead

int spssOpenRead (const char *fileName, int *handle)

Description

This function opens an SPSS data file for reading and returns a handle that should be
used for subsequent operations on the file.

Parameter Description

fileName Name of the file

handle Pointer to handle to be returned
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_FITAB_FULL File table full (too many open SPSS data files)
SPSS_FILE_OERROR Error opening file

SPSS_NO_MEMORY Insufficient memory

SPSS_FILE_RERROR Error reading file

SPSS_INVALID_FILE File is not a valid SPSS data file

SPSS_NO_TYPE2 File is not a valid SPSS data file (no type 2 record)
SPSS_NO_TYPE999 File is not a valid SPSS data file (missing type 999

record)

186
Appendix A

Example

#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */

error = spssOpenRead("bank.sav", &fH);
if (error == 0)

/* fH is a valid handle; process and */

I close file */
error = spssCloseRead(fH);

else

/* Handle error*/

=
}

See alsspssCloseRead
spssOpenWrite

int spssOpenWrite (const char *filename, int *handle)

Description

This function opens afile in preparation for creating a new SPSS data file and returns
a handle that should be used for subsequent operations on the file.

Parameter Description

filename Name of the data file

handle Pointer to handle to be returned
Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

187
SPSS Input/Output DLL

Error Code Description
SPSS_OK No error
SPSS_FITAB_FULL File table full (too many open SPSS data files)
SPSS_FILE_OERROR Error opening file
SPSS_NO_MEMORY Insufficient memory
Example

#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */

error = spssOpenWrite("dat.sav”, &fH);
if (error == 0)

/* fH is a valid handle; process and */
I close file */

error = spssCloseWrite(fH);

else

/* Handle error*/

=
}

See alsspssCloseWrite

spssOpenWriteCopy

int spssOpenWriteCopy (const char *fileName, const char *dictFileName, int *handle)

Description

This function opens a file in preparation for creating a new SPSS data file and
initializes its dictionary from that of an existing SPSS data file. It is useful when you
want to modify the dictionary or data of an existing file or replace all of its data. The
typical sequence of operations is to clésOpenWriteCopy (newFileName,

oldFileName, ...) to open a new file initialized with a copy of the old file’'s dictionary,
thenspssOpenRead (oldFileName, ...) to open the old file to access its data.

188

Appendix A
Parameter Description
fileName Name of the new file
dictFileName Name of existing file
handle Pointer to handle to be returned
Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_FITAB_FULL File table full (too many open SPSS data files)
SPSS_FILE_OERROR Error opening new file for output
SPSS_NO_MEMORY Insufficient memory
SPSS_FILE_RERROR Error reading existing file
SPSS_INVALID_FILE File is not a valid SPSS data file
SPSS_NO_TYPE2 File is not a valid SPSS data file (no type 2 record)
SPSS_NO_TYPE999 File is not a valid SPSS data file (missing type 999
record)
spssQueryType7

int spssQueryType7(const int handle, const int subType, int *bFound)

Description

This function can be used to determine whether a file opened for reading or append
contains a specific “type 7” record. The following type 7 subtypes might be of interest:
Subtype 3. Release information

Subtype 4. Floating point constants including the system missing value

Subtype 5. Variable set definitions

189
SPSS Input/Output DLL

Subtype 6. Date variable information

Subtype 7. Multiple response set definitions

Subtype 8. Data Entry for Windows (DEW) information
Subtype 10. TextSmart information

Subtype 11. Measurement level, column width, and alignment for each variable

Parameter Description

handle Handle to the data file

subtype Specific subtype record

bFound Returned set if the specified subtype was encountered
Returns

The result of the query is returned in parameteund—TRUE if the record subtype
was encountered when reading the file's diction&at;, SE otherwise.

Error Code Description
SPSS_OK No error
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_WRMODE The file was opened for writing
SPSS_INVALID_7SUBTYPE Parameter subtype not between 1 and
MAX7SUBTYPE
spssReadCaseRecord

int spssReadCaseRecord (int handle)

Description

This function reads the next case from a data file into internal buffers. Values of
individual variables for the case may then be obtained by calling the
spssGetValueNumeric andspssGetValueChar procedures.

190
Appendix A

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_FILE_END End of the file reached; no more cases (warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_WRMODE File is open for writing, not reading
SPSS_FILE_RERROR Error reading file

Example

SeespssGetValueChar

spssSeekNextCase

int spssSeekNextCase(const int handle, const long caseNumber)

Description

This function sets the file pointer of an input file so that the next data case read will be
the one specified via theaseNumber parameter. A zero-origin scheme is used. That

is, the first case is number 0. The next case can be read by calling either
spssWholeCaseln or spssReadCaseRecord. If the specified case is greater than or equal
to the number of cases in the file, the call to the input function will return
SPSS_FILE_END.

Parameter Description
handle Handle to the data file

caseNumber Zero-origin case number

191
SPSS Input/Output DLL

Returns

Returns one of the following codes. Success is indicated by 3@®5_0K), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_WRMODE The file is open for writing, not reading
SPSS_NO_MEMORY Insufficient memory
SPSS_FILE_RERROR Error reading the file
SPSS_INVALID_FILE The file is not a valid SPSS data file

See alsepssWholeCaselnspssReadCaseRecord

spssSetCaseWeightVar

int spssSetCaseWeightVar (int handle, const char *varName)

Description

This function defines variablearName as the case weight variable for the data file
specified by thewandle.

Parameter Description

handle Handle to the data file

varName The name of the case weight variable
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

192

Appendix A
Error Code Description
SPSS_OK No error
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_RDMODE File is open for reading, not writing
SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist
SPSS_NUME_EXP The variable is not numeric
SPSS_NO_MEMORY Insufficient memory
Example

#include "spssdio.h"
void func()

int fH; /* file handle */
int error; [* error code */

error = spssOpenWrite("data.sav", &fH);

/* Define variables */

error = spssSetVarName(fH, "NUMCHILD", SPSS_NUMERIC);
if (error == SPSS_OK)

error = spssSetVarName(fH, "TOYPREF", SPSS_NUMERIC);

/* Set NUMCHILD as case weight */
error = spssSetCaseWeightVar(fH, "NUMCHILD");
if (error '= SPSS_OK)

/* Handle error */

spssSetCompression

int spssSetCompression (int handle, int compSwitch)

193

SPSS Input/Output DLL

Description

This function sets the compression attribute of an SPSS data file. Compression is set
on if compSwitch is one and off if it is zero. If this function is not called, the output file
will be uncompressed by default.

Parameter Description

handle Handle to the data file

compSwitch Compression switch
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with

spssCommitHeader

SPSS_INVALID_COMPSW Invalid compression switch (other than 0 or 1)

Example

#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */

error = spssOpenWrite("data.sav", &fH);

* Set data compression on */
error = spssSetCompression(fH, 1);

194
Appendix A

spssSetDateVariables

int spssSetDateVariables (int handle, int numofElements, const long *datelnfo)

Description

This function sets the Trends date variable information. The arragtainfo is

assumed to haveumofElements elements that correspond to the data array portion of
record 7, subtype 3. Its first six elements comprise the “fixed” information, followed
by a sequence of one or more three-element groups. Since very little validity checking
is done on the input array, this function should be used with caution and is
recommended only for copying Trends information from one file to another.

Parameter Description
handle Handle to the data file
numofElements Size of the arraylateinfo

datelnfo Array containing date variables information

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_RDMODE File is open for reading, not writing
SPSS_DICT_COMMIT Dictionary has already been written with

spssCommitHeader
SPSS_INVALID_DATEINFO The date variable information is invalid
SPSS_NO_MEMORY Insufficient memory

195
SPSS Input/Output DLL

Example

#include <stdlib.h>
#include "spssdio.h"

void func()
int fHIn, fHOut; /* input & output file handles */
int error; /* error code */
long *datelnfo; /* pointer to date variable info. */
int nElements; /* number of elements in date info. array *

” Open one file for reading and one for writing. */
error = spssOpenRead("bank.sav", &fHIn);

error = spssOpenWrite("bankcopy.sav”, &fHOut);
)’t Get the list of variables in input file;

** define variables in output file

*/

/* Get date variable information from input file and copy
** it to output file
*/

error = spssGetDateVariables(fHIn, &nElements, &datelnfo);
if (error == SPSS_OK)
{

error = spssSetDateVariables(fHOut, nElements, datelnfo);

f'r'ee(datelnfo);

}

See alsepssGetDateVariables

spssSetDEWFirst

int spssSetDEWFirst (const int handle, const void *pData, const long nBytes)

Description

DEW information (file information which is private to the SPSS Data Entry product)
can be delivered to the I/O DLL in whatever segments are convenient for the client. The
spssSetDEWFirst function is called to deliver the first such segment, and subsequent
segments are delivered by callingssSetDEWNext as many times as necessary.

Parameter Description
handle Handle to the data file
pData Pointer to the data to be written

nBytes Number of bytes to write

196
Appendix A

Returns

Returns one of the following codes. Success is indicated by 3&®5_0OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_EMPTY_DEW Zero bytes to be written (warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_READ_MODE The file is not open for writing
SPSS_DICT_COMMIT spssCommitHeader has already been called
SPSS_NO_MEMORY Insufficient memory for control blocks
SPSS_FILE_BADTEMP Cannot open or write to temporary file
See alsepssSetDEWNext
spssSetDEWNext

int spssSetDEWNext (const int handle, const void *pData, const long nBytes)

Description

The DEW information (file information that is private to the SPSS Data Entry product)
can be deliveredto the I/O DLL in whatever segments are convenient for the client. The
spssSetDEWFirst function is called to deliver the first such segment, and subsequent
segments are delivered by calliggssSetDEWNext as many times as necessary.

Parameter Description
handle Handle to the data file
pData Pointer to the data to be written

nBytes Number of bytes to write

197
SPSS Input/Output DLL

Returns

Returns one of the following codes. Success is indicated by 3@®5_0K), errors by
positive values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_DEW_NOFIRST spssSetDEWFirst was never called
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_READ_MODE The file is not open for writing
SPSS_DICT_COMMIT spssCommitHeader has already been called
SPSS_NO_MEMORY Insufficient memory for control blocks
SPSS_FILE_BADTEMP Cannot open or write to temporary file
See als®pssSetDEWFirst
spssSetldString

int spssSetldString (int handle, const char *id)

Description

This function sets the file label of the output SPSS data file associatedavitte to
the given stringd.

Parameter Description

handle Handle to the data file.

id File label. The length of the string should not exceed 64 characters.
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

198

Appendix A
Error Code Description
SPSS_OK No error
SPSS_EXC_LENG64 Label length exceeds 64; truncated and used
(warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_RDMODE File is open for reading, not writing
SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader
Example
include "spssdio.h"
void func()
int fH; /* file handle */
int error; /* error code */
char id[] = "This is a file label.";
error = spssOpenWrite("data.sav", &fH);
error = spssSetldString(fH, id);
if (error == SPSS_OK)
/* The label of the data file is now the string
:; "This is a file label."
=
}
spssSetMultRespDefs

int spssSetMultRespDefs(const int handle, const char *mrespDefs)

Description

This function is used to write multiple response definitions to the file. The definitions
consist of a single null-terminated ASCII string which is similar to that containing the
variable set definitions.

Parameter Description
handle Handle to the data file

mrespDefs ASCII string containing definitions

199
SPSS Input/Output DLL

Returns

Returns one of the following codes. Success is indicated by 3@®5_0K), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_EMPTY_MULTRESP The string contains no definitions (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_MEMORY Insufficient memory to store the definitions
spssSetTextinfo

int spssSetTextInfo (int handle, const char *textinfo)

Description

This function sets the text data from the null-terminated stringtnfo. If the string
is longer than 255 characters, only the first 255 are (quietly) useektififo contains
the empty string, existing text data, if any, are deleted.

Parameter Description
handle Handle to the data file
textinfo Text data

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_INVALID_HANDLE The file handle is not valid

200

Appendix A
SPSS_OPEN_RDMODE The file is open for input or append
SPSS_DICT_COMMIT spssCommitHeader has already been called
SPSS_NO_MEMORY Insufficient memory
spssSetValueChar

int spssSetValueChar (int handle, double varHandle, const char *value)

Description

This function sets the value of a string variable for the current case. The current case is
not written out to the data file unt#pssCommitCaseRecord is called.

Parameter Description

handle Handle to the data file

varHandle Handle to the variable

value Value of the variable as a null-terminated string. The length of the

string (ignoring trailing blanks, if any) should be less than or equal
to the length of the variable.

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing
SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-

ten with spssCommitHeader
SPSS_STR_EXP Variable associated with the handle is numeric
SPSS_EXC_STRVALUE The value is longer than the length of the variable

201
SPSS Input/Output DLL

Example
SeespssSetValueNumeric
See alsspssCommitCaseRecord

spssSetValueNumeric

int spssSetValueNumeric (int handle, double varHandle, double value)

Description

This function sets the value of a numeric variable for the current case. The current case
is not written out to the data file unthssCommitCaseRecord is called.

Parameter Description

handle Handle to the data file

varHandle Handle to the variable

value Value of the variable
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing
SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-

ten with spssCommitHeader

SPSS_NUME_EXP Variable associated with the handle is not numeric

202

Appendix A

Example

#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
double ageH, titleH; /* variable handles */
double age; /* value of AGE */

error = spssOpenWrite("data.sav", &fH);

/* Create numeric variable AGE and long string variable
** TITLE

*/

error = spssSetVarName(fH, "AGE", SPSS_NUMERIC);
error = spssSetvarName(fH, TITLE, SPSS_STRING(20));

/* Done with dictionary definition; commit dictionary */
error = spssCommitHeader(fH);

/* Get variable handles */
error = spssGetVarHandle(fH, "AGE", &ageH);

é'rror = spssGet VarHandle(fH, "TITLE", &titleH);

)’t Construct & write cases, with AGE set to 20, 21, ... 46
:; and TITLE set to "Super salesman"”

for (age = 20.0; age <= 46.0; ++age)

error = spssSetValueNumeric(fH, ageH, age);

error = spssSetValueChar(fH, titleH, "Super salesman")

error = spssCommitCaseRecord(fH);

error = spssCloseWrite(fH);

}

See alsspssConvertDatespssConvertTime spssCommitCaseRecord

spssSetVarAlignment

int spssSetVarAlignment (int handle, const char *varName, int alignment)

Description

This function sets the value of the alignment attribute of a variable.

203
SPSS Input/Output DLL

Parameter Description

handle Handle to the data file.

varName Variable name.

alignment Alignment. Must be one 0§PSS_ALIGN_LEFT,

SPSS_ALIGN_RIGHT, or SPSS_ALIGN_CENTER. If not a legal
value, alignment is set to a type-appropriate default.

Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_RDMODE The file is open for input or append
SPSS_DICT_COMMIT spssCommitHeader has already been called
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssSetVarCMissingValues

int spssSetVarCMissingValues
(int handle, const char *varName, int missingFormat,
const char *missingVall, const char *missingVal2, const char *missingVal3)

Description

This function sets missing values for a short string variable. The argument
missingFormat must be set to a value in the range 0-3 to indicate the number of missing
values supplied. When fewer than three missing values are to be defined, the redundant
arguments must still be presentadtigh their values are not inspected. For example,

if missingFormatis 2, missingVal3is unused. The supplied missing values must be null-
terminated and not longer than the length of the variable unless the excess length is

204
Appendix A

made up of blanks, which are ignored. If the missing value is shorter than the length of
the variable, trailing blanks are assumed.

Parameter Description
handle The handle to the data file
varName Variable name

missingFormat Missing format code

missingVall First missing value

missingVal2 Second missing value

missingVal3 Third missing value
Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code

SPSS_OK
SPSS_INVALID_HANDLE
SPSS_OPEN_RDMODE
SPSS_DICT_COMMIT

SPSS_INVALID_VARNAME
SPSS_VAR_NOTFOUND
SPSS_STR_EXP
SPSS_SHORTSTR_EXP
SPSS_INVALID_MISSFOR

SPSS_EXC_STRVALUE

SPSS_NO_MEMORY

Description

No error

The file handle is not valid

File is open for reading, not writing

Dictionary has already been written with
spssCommitHeader

The variable name is not valid

A variable with the given name does not exist
The variable is numeric

The variable is a long string (Ilength > 8)

Invalid missing values specificatiom{ssingFormat
is not in the range 0-3)

A missing value is longer than the length of the
variable

Insufficient memory

205
SPSS Input/Output DLL

Example

#include <stddef.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */

error = spssOpenWrite("data.sav", &fH);

/* Create short string variable TITLE and define values
** consisting of blanks or periods only as missing
*/

error = spssSetVarName(fH, "TITLE", SPSS_STRING(6));
if (error == SPSS_OK)

/* Last arg. is a placeholder since we are defining only two
** missing values
*/

error = spssSetVarCMissingValues(fH, "TITLE", 2,
e " NULL);

spssSetVarColumnWidth

int spssSetVarColumnWidth (int handle, const char *varName, int columnWidth)

Description

This function sets the value of the column width attribute of a variable. A value of zero
is special and means that the SPSS Data Editor, which is the primary user of this
attribute, is to set an appropriate width using its own algorithm.

Parameter Description

handle Handle to the data file.

varName Variable name.

columnWidth Column width. If negative, a value of zero is (quietly) used instead.
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

206
Appendix A

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_RDMODE The file is open for input or append
SPSS_DICT_COMMIT spssCommitHeader has already been called
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssSetVarCValueLabel

int spssSetVarCValuelLabel
(int handle, const char *varName, const char *value, const char *label)

Description

This function changes or adds a value label for the specified value of a short string
variable. The label should be a null-terminated string not exceeding 60 characters in

length.
Parameter Description
handle Handle to the data file
varName Variable name
value Value to be labeled

label Label

207

Returns

SPSS Input/Output DLL

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code
SPSS_OK
SPSS_EXC_LEN60

SPSS_INVALID_HANDLE
SPSS_OPEN_RDMODE
SPSS_DICT_COMMIT

SPSS_INVALID_VARNAME
SPSS_VAR_NOTFOUND
SPSS_STR_EXP
SPSS_SHORTSTR_EXP
SPSS_EXC_STRVALUE

SPSS_NO_MEMORY
SPSS_INTERNAL_VLABS

Example

#include "spssdio.h"
void func()

int fH;
int error;

Description
No error.

Label length exceeds 60; truncated and used
(warning).

The file handle is not valid.
File is open for reading, not writing.

Dictionary has already been written with
spssCommitHeader.

Variable name is invalid.

A variable with the given name does not exist.
The variable is numeric.

The variable is a long string (length > 8).

The value ¢value) is longer than the length of the
variable.

Insufficient memory.

Internal data structures of the DLL are invalid. This
signals an error in the DLL.

/* file handle */
/* error code */

error = spssOpenWrite("data.sav", &fH);

/* Create short string variable TITLE and label the value
** consisting of all blanks as "Did not want title"
*/

error = spssSetVarName(fH, "TITLE", SPSS_STRING(6));

if (error == SPSS_OK)
{

error = spssSetVarCValueLabel(fH, "TITLE", "

"Did not want title");
}
}

See als@pssSetVarCValuelLabels

208
Appendix A

spssSetVarCValuelabels

int spssSetVarCValuelLabels
(int handle, const char **varNames, int numVars,
const char **values, const char **labels, int numLabels)

Description

This function defines a set of value labels for one or more short string variables. Value
labels already defined for any of the given variable(s), if any, are discarded (if the labels
are shared with other variables, they remain associated).

Parameter Description

handle Handle to the data file

varNames Array of pointers to variable names

numVars Number of variables

values Array of pointers to values

labels Array of pointers to labels

numLabels Number of labels or values)
Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_EXC_LENG60 At least one label’'s length exceeded 60; truncated
and used (warning).

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with

spssCommitHeader.

SPSS_NO_VARIABLES Number of variablesr{umVars) is zero or negative.

209

SPSS_NO_LABELS
SPSS_INVALID_VARNAME
SPSS_VAR_NOTFOUND
SPSS_STR_EXP
SPSS_SHORTSTR_EXP

SPSS_EXC_STRVALUE

SPSS_DUP_VALUE
SPSS_NO_MEMORY
SPSS_INTERNAL_VLABS

Example

#include "spssdio.h"

void func()
int fH;
int error;

static char *vNames[2]=
{ "TITLE", "OLDTITLE" }
static char *vwValues[3] =

SPSS Input/Output DLL

Number of labelsfumLabels) is zero or negative.
At least one variable name is invalid.

At least one of the variables does not exist.

At least one of the variables is numeric.

At least one of the variables is a long string
(length < 8).

At least one value is longer than the length of the
variable.

The list of values contains duplicates.
Insufficient memory.

Internal data structures of the DLL are invalid. This
signals an error in the DLL.

/* file handle */
/* error code */
/* variable names */

/* values to be labeled */

", "techst", "consul" };

static char *vLabels[3] = /* corresponding labels */
{ "Unknown", "Member of tech. staff', "Outside consultant" };

error = spssOpenWrite("data.sav", &fH);

/* Define two short string variables TITLE & OLDTITLE and a
** set of shared value labels
*
/
error = spssSetVarName(fH, vNames[0], SPSS_STRING(6));
if (error == SPSS_OK)
error = spssSetVarName(fH, vNames[1], SPSS_STRING(6));
if (error == SPSS_OK)
{

error =
spssSetVarCValueLabels(fH, vNames, 2, vValues, vLabels, 3);

=

See alsspssSetVarCValuelLabel

210
Appendix A

spssSetVarLabel

int spssSetVarLabel (int handle, const char *varName, const char *varLabel)

Description

This function sets the label of a variable.

Parameter Description
handle Handle to the data file.
varName Variable name.
varLabel Variable label. The length of the string should not exceed 120 char-
acters. IfvarLabel is the empty string, the existing label, if any, is
deleted.
Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_EXC_LEN120 Variable label's length exceeds 120; truncated and
used (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NO_MEMORY Insufficient memory

21

SPSS Input/Output DLL

Example
#include "spssdio.h"
void func()
int fH; /* file handle */
int error; /* error code */

error = spssOpenWrite("data.sav", &fH);
/* Do the file operations here */

/* Define string variable NAME of length 8 */
error = spssSetVarName(fH, "NAME", SPSS_STRING(8));

/* Label the variable */
error =
spssSetVarLabel(fH, "NAME", "Name of respondent");

spssSetVarMeasureLevel

int spssSetVarMeasureLevel (int handle, const char *varName, int measureLevel)

Description

This function sets the value of the measurement level attribute of a variable.

Returns

Parameter Description

handle Handle to the data file.

varName Variable name.

measurelLevel Measurement level. Must be one 08PSS_MLVL_NOM,

SPSS_MLVL_ORD, SPSS_MLVL_RAT, or SPSS_MLVL_UNK for
nominal, ordinal, scale (ratio), and unknown, respectively. If
SPSS_MLVL_UNK, measurement level is set to a type-appropriate
default.

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

212

Appendix A
Error Code Description
SPSS_OK No error
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_RDMODE The file is open for input or append
SPSS_DICT_COMMIT spssCommitHeader has already been called
SPSS_INVALID_VARNAME The variable name is not valid
SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_INVALID_MEASURELEVEL measureLevel is not in the legal range, or it is
SPSS_MLVL_RAT and the variable is a string
variable

spssSetVarNMissingValues

int spssSetVarNMissingValues
(int handle, const char *varName, int missingFormat,
double missingVall, double missingVal2, double missingVal3)

Description

This function sets missing values for a numeric variable. The interpretation of the
argumentsnissingVall, missingVal2, andmissingVal3 depends on the value of
missingFormat. If missingFormat is set toSPSS_MISS_RANGE, missingVall and
missingVal2 are taken as the upper and lower limits, respectively, of the range, and
missingVal3is ignored. IfmissingFormatis SPSS_MISS_RANGEANDVAL, missingvall
andmissingVal2 are taken as limits of the range amésingVal3is taken as the discrete
missing value. limissingFormat is neither of the above, it must be in the range 0-3,
indicating the number of discrete missing values present. For example, if
missingFormat is 2, missingVall and missingVal2 are taken as two discrete missing
values andnissingVval3 is ignored. (The macrasPSS_NO_MISSVAL,
SPSS_ONE_MISSVAL, SPSS_TWO_MISSVAL, andSPSS_THREE_MISSVAL may be
used as synonyms for 0-3.)

213

SPSS Input/Output DLL

Parameter Description
handle Handle to the data file
varName Variable name
missingFormat Missing values format code
missingVall First missing value
missingVal2 Second missing value
missingVal3 Third missing value
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code

SPSS_OK
SPSS_INVALID_HANDLE
SPSS_OPEN_RDMODE
SPSS_DICT_COMMIT

SPSS_INVALID_VARNAME
SPSS_VAR_NOTFOUND
SPSS_NUME_EXP
SPSS_INVALID_MISSFOR

SPSS_NO_MEMORY

Description

No error

The file handle is not valid

File is open for reading, not writing

Dictionary has already been written with
spssCommitHeader

The variable name is not valid
A variable with the given name does not exist
The variable is not numeric

Invalid missing values specificatiom(ssingFormat
is invalid or the lower limit of range is greater than the
upper limit)

Insufficient memory

214
Appendix A

Example

#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */

error = spssOpenWrite("data.sav", &fH);

J* Create numeric variable BUYCODE and set range 1-9 as
** missing

*/

error = spssSetVarName(fH, "BUYCODE", SPSS_NUMERIC);

if (error == SPSS_OK)

/* Last arg. is a placeholder since we are defining a range
** only

*/

error =

spssSetVarNMissingValues(fH, "BUYCODE", SPSS_MISS_RANGE,
1.0, 9.0, 0.0);

=
}

See alsspssSetVarCMissingValues

spssSetVarNValueLabel

int spssSetVarNValueLabel
(int handle, const char *varName, double value, const char *label)

Description

This function changes or adds a value label for the specified value of a numeric
variable. The label should be a null-terminated string not exceeding 60 characters in

length.
Parameter Description
handle Handle to the data file
varName Variable name
value Value to be labeled

label Label

215

Returns

SPSS Input/Output DLL

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code
SPSS_OK
SPSS_EXC_LEN60

SPSS_INVALID_HANDLE
SPSS_OPEN_RDMODE
SPSS_DICT_COMMIT

SPSS_INVALID_VARNAME
SPSS_VAR_NOTFOUND
SPSS_NUME_EXP
SPSS_NO_MEMORY
SPSS_INTERNAL_VLABS

Example

#include "spssdio.h"

void func()
int fH;
int error;

Description
No error.

Label length exceeds 60; truncated and used
(warning).

File handle not valid.
File is open for reading, not writing.

Dictionary has already been written with
spssCommitHeader.

Variable name is invalid.

A variable with the given name does not exist.
The variable is not numeric.

Insufficient memory.

Internal data structures of the DLL are invalid. This
signals an error in the DLL.

/* file handle */
/* error code */

error = spssOpenWrite("data.sav", &fH);

/* Create numeric variable BUYCODE and label value 0.0 as

** "Unknown"
*/

error = spssSetVarName(fH, "BUYCODE", SPSS_NUMERIC);

if (error == SPSS_OK)
{

error =

spssSetVarNValueLabel(fH, "BUYCODE", 0.0, "Unknown");

}
}

See als@pssSetVarNValuelLabels

216
Appendix A

spssSetVarNValuelabels

int spssSetVarNValuelLabels
(int handle, const char **varNames, int numVars,
const double *values, const char **labels, int numLabels)

Description

This function defines a set of value labels for one or more numeric variables. Value
labels already defined for any of the given variable(s), if any, are discarded (if the labels
are shared with other variables, they remain associated with those variables).

Parameter Description

handle Handle to the data file

varNames Array of pointers to variable names

numVars Number of variables

values Array of values

labels Array of pointers to labels

numLabels Number of labels or values
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_EXC_LENG60 At least one label’'s length exceeded 60; truncated
and used (warning).

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with

spssCommitHeader.

SPSS_NO_VARIABLES Number of variablesr{umVars) is zero or negative.

217
SPSS Input/Output DLL

SPSS_NO_LABELS Number of labelsfumLabels) is zero or negative.
SPSS_INVALID_VARNAME At least one variable name is invalid.
SPSS_VAR_NOTFOUND At least one of the variables does not exist.
SPSS_NUME_EXP At least one of the variables is not numeric.
SPSS_DUP_VALUE The list of values contains duplicates.
SPSS_NO_MEMORY Insufficient memory.

SPSS_INTERNAL_VLABS Internal data structures of the DLL are invalid. This

signals an error in the DLL.

Example

#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
static char *vNames[2]= /* variable names */
{ "AGE", "AGECHILD" },
static double vValues[3] = /* values to be labeled */
{ -2.0, -1.0, 0.0 }
static char *vLabels[3] = /* corresponding labels */

{ "Unknown", "Not applicable", "Under 1" }
error = spssOpenWrite("data.sav", &fH);

/* Define two numeric variables AGE & AGECHILD and a set of
*7 shared value labels

*

error = spssSetVarName(fH, vNames[0], SPSS_NUMERIC);

if (error == SPSS_OK)

error = spssSetVarName(fH, vNames[1], SPSS_NUMERIC);

i{f (error == SPSS_OK)

error =
spssSetVarNValueLabels(fH, vNames, 2, vValues, vLabels, 3);

See alsspssSetVarNValuelLabel

spssSetVarName

int spssSetvVarName (int handle, const char *varName, int varLength)

218
Appendix A

Description

This function creates a new variable nameadvame, which will be either numeric or
string based omarLength. If the latter is zero, a numeric variable with a default format
of F8.2 will be created; if it is greater than 0 and less than or equal to 255, a string
variable with lengthvarLength will be created; any other value will be rejected as
invalid. For better readability, the macreBSS_NUMERIC andSPSS_STRING(/ength)
may be used as values faarLength.

Parameter Description

handle Handle to the data file

varName Variable name

varLength Type and size of the variable
Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARTYPE Invalid length code \arLength is negative or
exceeds 255)

SPSS_INVALID_VARNAME Variable name is invalid

SPSS_DUP_VAR There is already a variable with the same name

SPSS_NO_MEMORY Insufficient memory

219
SPSS Input/Output DLL

Example

#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */

error = spssOpenWrite("data.sav", &fH);

/* Create numeric variable AGE and string variable NAME */
error = spssSetVarName(fH, "AGE", SPSS_NUMERIC);
if (error == SPSS_OK)
error = spssSetVarName(fH, "NAME", SPSS_STRING(20));

spssSetVarPrintFormat

int spssSetVarPrintFormat
(int handle, const char *varName, int printType, int printDec, int printWid)

Description

This function sets the print format of a variable.

Parameter Description

handle Handle to the data file

varName Variable name

printType Print format type code (filepssdio.h defines macros of the form

SPSS_FMT_... for all valid format type codes)
printDec Number of digits after the decimal

printWid Print format width

220
Appendix A

Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_INVALID_PRFOR The print format specification is invalid or is
incompatible with the variable type

SPSS_NO_MEMORY Insufficient memory

Example

#include "spssdio.h"

void func()
int fH; /* file handle */
int error; [* error code */

error = spssOpenWrite("data.sav", &fH);
/* Define numeric variable TIMESTMP */
error = spssSetVarName(fH, "TIMESTMP", SPSS_NUMERIC);

/* Set the print format of TIMESTMP to DATETIME28.4 */

error = spssSetVarPrintFormat(fH, "TIMESTMP",
SPSS_FMT_DATE_TIME, 4, 28);

See als@pssSetVarWriteFormat

221
SPSS Input/Output DLL

spssSetVarWriteFormat

int spssSetVarWriteFormat
(int handle, const char *varName, int write Type, int writeDec, int writeWid)

Description

This function sets the write format of a variable.

Parameter Description
handle Handle to the data file
varName Variable name
write Type Write format type code (filapssdio.h defines macros of the form
SPSS_FMT_... for all valid format type codes)
writeDec Number of digits after the decimal
write Wid Write format width
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_INVALID_WRFOR The write format specification is invalid or is

incompatible with the variable type

SPSS_NO_MEMORY Insufficient memory

222

Appendix A
Example
#include "spssdio.h"
void func()
int fH; /* file handle */
int error; [* error code */
error = spssOpenWrite("data.sav", &fH);
/* Define string variable ODDCHARS of length 7 */
error = spssSetVarName(fH, "ODDCHARS", SPSS_STRING(7));
/¥ Set the write format of ODDCHARS to AHEX14 *
error =
spssSetVarWriteFormat(fH, "ODDCHARS", SPSS_FMT_AHEX, 0, 14);
}
spssSetVariableSets

int spssSetVariableSets (int handle, const char *varSets)

Description

This function sets the variable sets information in the data file. The information must
be provided in the form of a null-terminated string. No validity checks are performed
on the supplied string beyond ensuring that its length is not 0. Any existing variable
sets information is discarded.

Parameter Description
handle Handle to the data file

varSets Variable sets information

223

Returns

SPSS Input/Output DLL

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code

SPSS_OK
SPSS_EMPTY_VARSETS
SPSS_INVALID_HANDLE
SPSS_OPEN_RDMODE
SPSS_DICT_COMMIT

SPSS_NO_MEMORY

Example

#include <stdlib.h>
#include "spssdio.h"

Description

No error

The variable sets information is empty (warning)
The file handle is not valid

File is open for reading, not writing

Dictionary has already been written with
spssCommitHeader

Insufficient memory

void func()
int fHIn, fHOut; /* input & output file handles */
int error; /* error code */
char *vSets; [* ptr to variable sets info. */

”* Open one file for reading and one for writing. */
error = spssOpenRead("bank.sav", &fHIn);

error = spssOpenWrite("bankcopy.sav”, &fHOut);

/* Copy variable sets information from input file to output

** file
*/

error = spssGetVariableSets(fHIn, &vSets);

if (error == SPSS_OK)
{

error = spssSetVariableSets(fHOut, vSets);
/¥ Handle errors and remember to free variable set string */

f'r'ee(vSets);

else if (error != SPSS_EMPTY_VARSETS)

[* Error getting variable sets information from input file */

=

224

Appendix A

spssSysmisVal

double spssSysmisVal (void)

Description

This function returns the SPSS system-missing value for the host system. It may be
called at any time.

Parameter Description

None

Returns

The SPSS system-missing value for the host system.

Example

#include <stdio.h>
#include "spssdio.h"
void func()

double sysmis; /* system missing value */
/* Get and print the system missing value */

sysmis = spssSysmisVal();
printf("System missing value: %e\n");

spssWholeCaseln

int spssWholeCaseln (int handle, char *caseRec)

Description

This function reads a case from a data file into a case buffer provided by the user. The
required size of the buffer may be obtained by calbpgsGetCaseSize. This is a fairly
low-level function whose use should not be mixed with callsgssReadCaseRecord

using the same file handle because both procedures read a new case from the data file.

225

SPSS Input/Output DLL

Parameter Description

handle Handle to the data file

caseRec Buffer to contain the case
Returns

One of the following codes. Success is indicated by zePs§_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description
SPSS_OK No error
SPSS_FILE_END End of the file reached; no more cases (warning)
SPSS_INVALID_HANDLE The file handle is not valid
SPSS_OPEN_WRMODE File is open for writing, not reading
SPSS_FILE_RERROR Error reading file

Example

#include <stdlib.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
int caseSize; /* size of a case */
char *cRec; /* pointer to case record */

error = spssOpenRead("bank.sav", &fH);

/* Find out the size of the case and allocate memory for the
** case record.

*/

error = spssGetCaseSize(fH, &caseSize);

cRec = (char *) malloc(caseSize);

error = spssWholeCaseln(fH, cRec);

/* Buffer cRec now contains the first case in the data file.
** |t is up to us to make sense out of it.
*/

See alsepssGetCaseSizapssWholeCaseOut

226
Appendix A

spssWholeCaseOut

int spssWholeCaseOut
(int handle, const char *caseRec)

Description

This function writes a case assembled by the caller to a data file. The case is assumed
to have been constructed correctly in the butfeseRec, and its validity is not

checked. This is a fairly low-level function whose use should not be mixed with calls

to spssCommitCaseRecord using the same file handle because both procedures write a
new case to the data file.

Parameter Description

handle Handle to the data file

caseRec Case record to be written to the data file
Returns

One of the following codes. Success is indicated by zePs6_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing
SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-

ten with spssCommitHeader

SPSS_FILE_ WERROR File write error

227

SPSS Input/Output DLL

Example

#include <string.h>
#include "spssdio.h"

void func()
int fH; /* file handle */
int error; /* error code */
int caseSize; /* size of a case */
char caseRec[16]; /* case record */
double age; /* value of AGE */

error = spssOpenWrite("data.sav", &fH);

/* Define two variables */
error = spssSetVarName(fH, "NAME", SPSS_STRING(7));

error = spssSetvVarName(fH, "AGE", SPSS_NUMERIC);

/* Done with dictionary definition; commit dictionary */
error = spssCommitHeader(fH);

/* Please note that code beyond this requires knowledge of
** SPSS data file formats, and it very easy to produce

* garbage.

*/

/* Find out the size of the case and make sure it is 16 as
** we assume it to be

*/

error = spssGetCaseSize(fH, &caseSize);

*

/* Construct one case with NAME "KNIEVEL" and AGE 50.
** \Write out the case and close file.

*/
memcpy(caseRec, "KNIEVEL ", 8); /* Padding to 8 */
age = 50.0;

memcpy(caseRec+8, &age, 8); /* Assuming sizeof double is 8 */
error = spssWholeCaseOut(fH, caseRec);

error = spssCloseWrite(fH);

See alsepssGetCaseSizapssWholeCaseln

Appendix

SPSS Third-Party API for
SPSS for Windows

Introduction

This document is intended for developers who are writing applications to be
integrated with SPSS for Windows. It discusses the specific registry entries you'll
need to use and strategies for modifying your setup program to automatically register
add-ins to SPSS.

The SPSS third-party API permits applications, scripts, and syntax &tsins)
to be added to the menu bar of the SPSS product. These add-ins are stored in the
system registry and are persistent from session to session. Beginning with SPSS 7.5,
users can add menu and toolbar items interactively. These entries are stored in the
registry using the same technique. You'll need to familiayizarself with the
Windows registry in order to use the information below effectively. Good background
articles are available with Microsoft Visual C++ (32-bit editions) and the Microsoft
Developer Support Network. Add-ins are registered on the following path:
HKEY_CURRENT_USERI\SoftwarelSPSS\|SPSS for Windows\10.0\0OtherApps.
The version number is expected to change with each major release.

Contents of the Registry

When SPSS is launched, it will look for the presence of the key

HKEY CURRENT USER\Software\SPSS\SPSS for Windows\10.0\0therApps. If

found, SPSS will iterate over its subkeys, each of which represents a menu add-in. In
Figure B-1 below, there are two add-in keg¥scel charting-0 andNotepado. The

228

229

SPSS Third-Party APl for SPSS for Windows

names of these keys are not in themselves significant as long as they’re unique within
OtherApps.

Figure B-1
Windows Registry Editor with Notepad and Excel added to SPSS menus

&' Registry Editor
Beaqistry Edit “iew Help

g SCC ;l M ame | Data
ECI SPSS E"J[Default] "D \Program Fileshhicrozoft Office\Office \EXCEL EXE™"
=3 SPSS for windows
-3 7.0
=3 80

B0 Charts

{2 ColorMames
Q D ataE ditor
- Graphics
Elg Otherdpps
- EREGCARD
F‘{:I Excel0

[MenuSeparator

::I MeruType
{1 ReadFile
-] Notepad-1
E-{20 SyntarGuide
- SyntaxGuide-AdyStat: ™
4] | LI_I 4| | 2l
| My ComputerHEEY_CURREMT_USER S oftwarehSPSS4YSPSS for Windowsh8. 040therdppshE scel-0tLaunch A

The specific details of how the add-ins are configured are located under the add-in keys
and are keys, not values. Table B-1 summarizes the available keys. All keys use only
the default name, and their values are stored in the registry as strings. Notice the right
pane of Figure B-1. Theb icon indicates a string value, agDlefault) indicates the

default (null) name. Make sure that when you've populated the registry, the values all
have this representation in the registry.

230

Appendix B

Table B-1

Add-in configuration details

Key Description

ActionID How the application is to be launched

DeleteFile Whether the data file is to be deleted when SPSS terminates
Launch The command line to launch the program

Menu Name of menu and its place in the menu hierarchy

MenuEnable Whether always enabled or only if data are loaded into SPSS
MenuPos The position of the menu item on the containing pop-up menu
MenuSeparator Whether a menu separator is placed above menu item
MenuType Which SPSS windows are affected

Minimize Whether or not the application is launched minimized and whether

or not SPSS is minimized when the application is launched

ReadFile The type of data file passed to the application, if any

SingleSeat Whether the application is disabled in client/server mode.
TBOnly Whether the application is to be accessible only from the toolbar

A description of each configuration detail follows.

Launch

The application name and verb within the registration database. The name and verb are
validated when SPSS attempts to launch the third-party application. The maximum
length of the value is 255 characters. SPSS will not update the menusiifitis longer. For
example:

[Crefauilt] "CAMSOFFICEAESCELSE moel exe'

MenuType

Indicates which SPSS window(s) the menu item will be added to. The specification is
a list of values separated by commas. Valid entries are 0, 2, 3, or 4. Zero is the Data
Editor, 2 is the Viewer, 3 is the Syntax Editor, and 4 is the Script menu. The example
below would place the menu item in the Data Editor and syntax windows.

231
SPSS Third-Party APl for SPSS for Windows

For example:
B[O efaul] | "0,z
MenuPos

Indicates the position of the menu item within the individual mpopups. This can

be a series of numbers if the user has created new menus as well as menu items. In the
example below, a new menu, My Applications, was added to the Utilities menu, and
three submenus, Corel tools, Productivity tools, and Games, were added under it. The
Games menu has four menu items under it. MhesuPos for the Whizzy Whirly game

is as follows:

2B D efaul) | 0.2 6
Zero indicates that Whizzy Whirly is the firstitem on its menu; 2 indicates that Games

is the third item on its menu, and 6 indicates that My Applications is the seventh menu
item on its menu (counting the separator).

Figure B-2
SPSS menus displaying Whizzy Whirly menu item

Untitled - 5P55 Data E ditor [_ (O] x|

File Edit “iew Data Tranzgform Analyee Graphs QISR indow Help

EEE S R T

Define Sets...

Wy applications # R R 3
Uee Sets... Broductivity toolz #

Dungeons n Dragons
Solitaire
Pinball

232
Appendix B

ActionlD

Indicates the type of add-in. SPSS supports the running of external applications,
internal scripts (typicallyz.sbs files), or SPSS syntax files (typically,sps files).
External applications are usuakyexe files but can be invoked from any valid
command line. Therefore, you can us&/1SOffice|ExcellExcel.exe, with your sales
data loaded frone:Imydatalsales1.xls; or you can simply use:imydatalsales1.xls to
launch Excel with your sales data loaded. A good rule of thumb is that if it works on
the Start > Run menu, it will work here. You may need embedded quotes around long
filenames.

This key is required by SPSS to identify the type of application to which the
LAUNCH keyword applies. Valid values are 0 (application), 1 (script), and 2 (syntax).
For example:

(D efault] e

SingleSeat

This value is 1 if the add-in works only in single-seat (non-client/server) mode. A value
of 0 or a missing key indicates that the application will be available in both single-seat
and client/server modes. For example:

(D efault] o

TBOnly

Thisvalue is 1 ifthe add-inis to be accessible via the toolbar only (and not via the menu
bar). A value of 0 indicates that the application can appear on SPSS menus as well as
on toolbars. For example:

(D efault] o

233

Menu

Describes the menu text and the location of the add-in on the menu hierarchy. This

SPSS Third-Party APl for SPSS for Windows

entry is in the formatenuName > Menultem whereMenuName is one of the symbols

defined below:
Table B-2

Symbols and menu names

Symbol

$FILE
SNEW
$DATABASE
$EDIT
$SVIEW
$DATA
$MERGE
$ORTHO
$TRANS
$RECODE
$ANALYZE
$REPORTS
$DESCSTATS
$TABLE
$MEAN
$ANOVA
$CORR
$REGR
$LOGLIN
$CLASS
$REDUCT
$SCALE
$NPAR
$TIMESERIES
$SURV
$MULTRESP
$GRAPH
$GRAFTIME

Menu

File

File > New

File > Open Database

Edit

View

Data

Data > Merge Files

Data > Orthogonal Design
Transform

Transform > Recode

Analyze

Analyze > Reports

Analyze > Descriptive Statistics
Analyze > Custom Tables
Analyze > Compare Means
Analyze > General Linear Model
Analyze > Correlate

Analyze > Regression

Analyze > Loglinear

Analyze > Classify

Analyze > Data Reduction
Analyze > Scale

Analyze > Nonparametric Tests
Analyze > Time Series

Analyze > Survival

Analyze > Multiple Response
Graphs

Graphs > Time Series

234

Appendix B

Table B-2 (Continued)
Symbols and menu names

SUTIL Utilities

$HELP Help

$CHART Graphics Editor Chart
$SERIES Graphics Editor Series
$ATTRIBUTES Graphics Editor Attributes
$SELECT Edit > Select

$OUTLINE Edit > Outline

$INSERT Insert

$FORMAT Format

Defining these symbolically makes for easier localization of programs that add menu
items to the SPSS menus. For example, a val$a®ALYZE > My Statistic places a menu
item called My statistic on the Analyze menu. Add an ampersanddédicate the
acceleratorANALYZE > My Sta&tistic would make Alt-t the accelerator for the add-in.

If you're defining your own menus, you’ll need to use actual strings rather than the
symbols defined above. For exampi#jy applications>My Sta&tistic would create a
menu, My Application (with “m” as the accelerator) and a menu item of My Statistic
below it. Itis the responsibility of the third-party application to specify a unique menu
item and mnemonic when the registry is updated. (To do so, the vendor must check all
other third-party sections within the registration database.) The menu and its items are
validated when SPSS is launched.

If a single token is specified, it is assumed to be a menu item at the bottom of the
Utilities menu.

If the entire tree already exists and/ianuPos entry does not exist, the item will be
placed at the bottom of the last node.

235
SPSS Third-Party APl for SPSS for Windows

MenuSeparator

Whether or not a separator line is inserted before the menu item. Valid entries are 0 and 1.
Zero does not insert a separator; 1 does insert a separator. Defaults to 0. For example:

(D efault] e
Minimize

Whether or not the application is launched minimized and whether or not SPSS is
minimized when the application is launched. Valid entries are 0, 1, and 2. Zero

minimizes neither; 1 minimizes SPSS; 2 minimizes the third-party application.
Defaults to 0. For example:

(D efault] o
MenuEnable

When the menu item is enabled. Valid entries are 0 and 1. Zero enables the menu item

at all times; 1 enables the menu item only while data is present in SPSS. Defaults to 0.
For example:

(D efault]
ReadFile

The type of data file passed to the application. The following table describes the types.
For example:

(D efault] e

236

Appendix B
Table B-3
File types
Spec Type ReadFile
0 DDE Third-party application will initiate a DDE conversation to read
the working data file.
1 No file No file is written to disk when the third-party application is
launched.
SPSS writes the working data file to disk (in the Windows
2 SPSS data file temporary directory). If the menu item is enabled but no working
data file exists, the third-party application is launched without a
filename.

Spreadsheet type files are written with field names. If the menu
3 Excel version 2 item is enabled but no working data file exists, the third-party
application is launched without a filename.

SYLK

123 Release 3
Tab-Delimited
dBase IV

~N o o b

This value defaults to 1.

DeleteFile

Whether the file used to pass data to the application is to be deleted when SPSS
terminates. If this key has the value 0, the file will not be deleted. If it has the value 1
(the default), the file will be deleted. For example:

(D efault] e

Status of Files

When SPSS creates a file, it stores it in the Windows temporary directory. SPSS will
then delete that file when it exits unless theleteFile key has a value of 0. When the
third-party application creates a file for SPSS to read, it should follow the SPSS
“temporary” naming conventions so that SPSS will delete the file when it exits.

Appendix

C

Coding Conventions

This appendix describes the coding conventions used by SPSS in developing the
examples included with the developer’s tools. Following a consistent set of guidelines
makes your code easier to manage, particularly if more than one person will be
working on it. These conventions are included here to aid to interpreting the examples
and to use as guidelines for developing your own code.

Following are some general guidelines:

m Declare all variables before using them. (In Visual Basic,&h#on Explicit
statement can be used to force explicit declaration of all variables.)

m Be consistent in naming variables and procedures. Use standard prefixes to
indicate the data type and scope of variables.

® Be generous with comments.
®m Indent nested blocks of code to show logic and increase readability.

Variable and Procedure Names

Be consistent when naming variables and procedures. Names shouldtba imr

mixed case and should be descriptive. Variable names should use standard prefixes to
indicate data type and scope, as shown in Table C-1 and Table C-2. Procedure names
should begin with verbs, such mitNameArray or CloseDialog.

237

238

Appendix C
Table C-1
Variable subtypes and suggested prefixes
Subtype Prefix Example
Boolean bin binFound
Byte byt bytRasterData
Date(Time) dtm dtmStart
Double dbl dbiTolerance
Error err errOrderNum
Integer int intQuantity
Long Ing IngDistance
Object obj objCurrent
Single sng sngAverage
String str strFirstName

For frequently used or long terms, use abbreviations to help keep name length
reasonable, but be consistent. For example, randomly switching between “Cnt” and
“Count” can lead to confusion.

Variable Scope

The scope of variables varies depending on where they are declared. For example,
variables declared within a procedure are available only within that procedure.
Variables declared at the beginning of a module, above any procedure, are available to
all procedures in the module.

Always define variables with the smallest scope possible. However, in cases in
which itis necessary to give variables scope beyond a single procedure, you can add a
one-letter scope prefix to the variable name, as shown in Table C-2.

Table C-2

Variable scope and suggested prefixes.
Scope Prefix Example
Procedure-level None dblVelocity

Module-level m mdblVelocity

239

Object Variables

Coding Conventions

When referencing SPSS objects, use the variable names shown in Table C-3.

Table C-3

SPSS objects and suggested variable names.

Object

SPSS Application

SPSS Options
Documents
Data Document

Syntax Document
Viewer Document
Output Items Collection

Output Item
Chart

Text

Print Options
PivotTable
Footnotes
DataCells
LayerLabels
(Column)Labels
(Row)Labels
PivotMgr
Dimension

Naming Constants

Constant names should be in upper case, with underscores (_) between words. For

example:

USER_LIST_MAX

NEW_LINE

Type

ISpssApp
ISpssOptions
ISpssDocuments
ISpssDataDoc
ISpssSyntaxDoc
ISpssOutputDoc
ISpssltems
ISpssltem
ISpssChart
ISpssRtf
ISpssPrintOptions
PivotTable
ISpssFootnotes
ISpssDataCells
ISpssLayerLabels
ISpssLabels
ISpssLabels
ISpssPivotMgr
ISpssDimension

Variable Name
objSpssApp
objSpssOptions
objDocuments
objDataDoc
objSyntaxDoc
objOutputDoc
objOutputltems
objOutputltem
objSpssChart
objSpssText
objPrintOptions
objPivotTable
objFootnotes
objDataCells
objLayerLabels
objColumnLabels
objRowLabels
objPivotMgr
objDimension

240

Appendix C

Commenting Code

Itis a good idea to begin each procedure with a comment that describes what the
procedure does. This description should not provide the implementation details
because these often change over time, resultingpirecessary comment maintenance
or, worse yet, erroneous comments. (Use the code itself and any necessary inline
comments to describe the implementation.)

® Arguments passed to a procedure should be described when their purpose is not
obvious and when the procedure expects the arguments to be within a specific
range. Function return values and other variables that are changed by the
procedure, especially through reference arguments, should also be described at the
beginning of each procedure.

® |t may be helpful to provide an overview of each step in a procedure. You need not
comment every line; rather, summarize blocks of code that accomplish meaningful
steps in the overall procedure.

m Comments should be contained within the procedure to which they pertain.

Code Structure

Organizing code into procedures makes it easier to manage and reuse pieces of code.
As a general rule, procedures are organized by task in the sample programs and can be
broken up into those that get the objects to be manipulated (for example, a pivot table
that is selected in the Viewer) and those that actually perform the manipulations on the
objects of interest (for example, making thetalsbold).

This structure is intended to make it easy to understand each procedure and to reuse
pieces of code. For example, a procedure that gets the first selected pivot table in the
Viewer could be used by a number of programs or scripts that manipulate the table in
different ways.

autoscriptsy4

command syntax
creating by copyingl8
creating by pasting.6
running procedures witl4

description in a scrip3
developer’s tools
automation overviewp
compatibility with future versions of SPSE,
customization overviewg
distributing your applicatiorg
integration overviews
technical support
distributed mode
overview,25

example programs
additional sources foB5
analyze data in Exce$9
application object39
chart object59
correlation matrix diagona82
data document object8
display reports in Word98
display, print, and export reportg6
file information object45
getting versus creating the application objddt,
I/O DLL, 105
interactive graph objecé2
make wide pivot tables narro®ws
manipulate output items9
manipulate pivot table91

241

Index

multiple instances of SPS87
options object42

output document objecb2
output item index88

output items collection objecb4
pivot table object57
Production Facility code]01
run syntax codel03
scripting,86

shorten percentage labe$s
syntax document objecs0
text object,65

Visual Basic version85

example scripts
adding an autoscrip?8
additional sources fo85
edit all pivot tables86
modifying a starter scripf6
writing an original script81
Excel
example program to analyze da®,

global scriptsy4

I/O DLL
16-bit versus 32-bit115
Borland C++,116
coding with,115
direct access input12
example programg,05, 117
introduction to,2
Visual Basic,116

I/O DLL procedures
spssAddMultRespDefQ,18
spssAddMultRespDefNL19

242

Index

spssCloseAppend 21
spssCloseRead?22
spssCloseWritel 23
spssCommitCaseRecort?4
spssCommitHeadet25
spssConvertDatd 26
spssConvertSPSSDat®8
spssConvertSPSSTIimE30
spssConvertTimel,30
spssCopyDocument$31
spssFreeDateVariablek32
spssFreeMultRespDef$33
spssFreeVarCValuelLabels33
spssFreeVariableSets34
spssFreeVarName$35
spssFreeVarNValuelLabels35
spssGetCaseSize36
spssGetCaseWeightVar37
spssGetCompressioh38
spssGetDateVariables39
spssGetDEWFirst,41
spssGetDewlInfol42
spssGetDEWNext43
spssGetEstimatedNofCasagg
spssGetldStringl 45
spssGetMultRespDef446
spssGetNumberofCaseigl7
spssGetNumberofVariables48
spssGetReleaselnft49
spssGetSystemString50
spssGetTextinfal 51
spssGetTimeStamp52
spssGetValueChat53
spssGetValueNumerid55
spssGetVarAlignment,56
spssGetVarCMissingValuet56
spssGetVarColumnWidti59
spssGetVarCValuelLabel59
spssGetVarCValueLabelLong61
spssGetVarCValuelLabels62
spssGetVarHandlg,64
spssGetVariableSets65
spssGetVarlnfol 67
spssGetVarLabel,68
spssGetVarLabelLond 69
spssGetVarMeasurelLevdl70
spssGetVarNames$y8

spssGetVarNMissingValue$y1
spssGetVarNValueLabel 74
spssGetVarNValueLabelLong75
spssGetVarNValuelLabels76
spssGetVarPrintFormaty9
spssGetVarWriteFormatg0
spssHostSysmisVal82
spssLowHighVal182
spssOpenAppend 83
spssOpenRead 85
spssOpenWritel86
spssOpenWriteCopyL87
spssQueryType7,88
spssReadCaseRecol®9
spssSeekNextCast90
spssSetCaseWeightvVdgil
spssSetCompressictf2
spssSetDateVariable®)4
spssSetDEWFirst, 95
spssSetDEWNext,96
spssSetldStrind,97
spssSetMultRespDef$98
spssSetTextinfa,99
spssSetValueChazp0
spssSetValueNumerigp1
spssSetVarAlignmeng02
spssSetVarCMissingValuez03
spssSetVarColumnWidtR05
spssSetVarCValueLabelD6
spssSetVarCValueLabe®)8
spssSetVariableSet222
spssSetVarLabe?10
spssSetVarMeasureLevelll
spssSetVarNamel17
spssSetVarNMissingValue2]12
spssSetVarNValuelLabet14
spssSetVarNValuelLabel®16
spssSetVarPrintForma19
spssSetVarWriteForma221
spssSysmisVak24
spssWholeCasela24
spssWholeCaseOw26

I/O DLL, SPSS data files and
DOCUMENT commandl14
string variables112
system-missing value$13
value labels113

243

variable alignment114
variable column widths] 14
variable labels113
variable measurement levelsl4
variable naming convention$12
I/O DLL, using to
append cases to an SPSS data fiz9
copy a dictionary109
read an SPSS data fil&10
write an SPSS data fild,08

introduction to
I/ODLL, 2
MACRO and MATRIX procedures3
OLE Automation;2
Production Facility 3
scripting facility, 3
third-party API,2

MACRO and MATRIX procedures
documentatiornd
introduction to,3
Microsoft Excel
example program to analyze dag8,
Microsoft Word
example program to display reporés

object browsers
accessing online Help fronT0

object model32

OLE Automation,34
application object code exampl&9
application object, getting versus creatidd,
chart object code examplg9
compared to scripting/2
data document object code exampi®,
defined,28

Index

example program to manage multiple instances of
SPSSg7

example program to manipulate correlation ma-
trix diagonal,92

example program to manipulate output itei®s,

example program to manipulate pivot tables,

example program to narrow pivot tabl&s,

example program to shorten percentage lalgds,

file information object code examplé5

high-level properties and methods

interactive graph object code examp#e,

introduction to,2

object model hierarchyg2

objects and corresponding user interfacs,

options object code examplé2

output document object code exampie,

output items collection object code examié,

pivot table object code exampl&?

syntax document object code exampie,

tasks that can be automated),

terminology,29

text object code examplé5

pasting syntax to a script window3

Production Facility
additional documentatiod,
code, 101
introduction to,3
overview,24
running procedured,6

run syntax
code,103

running procedures
with command syntaxi4
with dialog boxes14
with Production Facility,16

example application to display, print, and export rynning scripts76

reports 96

example of deciding what objects to use in an

application,32
example program to analyze Excel d&8,

example program to display reports in Wo#@,
example program to get output item ind&8,

SCRIPT command syntax3
script window,73

244

Index

scripting
adding a description to a script3
additional examples35
autoscript, step-by-step examp¥@,
compared to OLE Automatiorr2
defined,72
example to edit pivot table§6
modifying a starter script, step-by-step example,
76

overview,22
pasting syntax to a script window3
running scriptsyé
SCRIPT command syntax3
script window features;3
steps to use7s
types of scripts74
writing a script, step-by-step exampg,
scripting facility
additional documentatior,
introduction to,3
scripts
autoscripts, defined4
global, definedy4
starter, defined74
SPSS
creating command syntax by copyirig
creating command syntax by pastirig,
distributed mode25
getting datall
launching,10
MACRO and MATRIX procedures3
output item types9
overview of running an analysip
Production Facility24
running procedures from dialog boxds),
running procedures with command syntas,
scripting facility, overview22
selecting and running a procedute,
type libraries 69
viewing and manipulating result&9
window types 8

SPSS object modes2
starter scripts74
steps to write application coda4

syntax
creating by copyingl8
creating by pastingl,6
running procedures with4

technical suppor®

third-party API
introduction to,2
menu name<33
Windows registry 228

tutorials,4

Visual Basic

example application to display, print, and export
reports,96

example of detecting that the application objectis
already running41

example program to get output item ind&s,

example program to manage multiple instances of
SPSSg7

example program to manipulate correlation ma-
trix diagonal,92

example program to manipulate output iteis,

example program to manipulate pivot tables,

example program to narrow pivot tabl&s

example program to shorten percentage lalgds,

Production Facility code,01

run syntax codel03

Word
example program to display reporés

	1 Overview
	Developer’s Tools
	Documentation Map
	Using the SPSS Developer’s Tools
	More Information
	Statement of Compatibility
	Technical Support

	Distributing Your Finished Application

	2 Programmer’s Introduction to SPSS for Windows
	Working with Windows and Output
	Window Types
	Output Items

	Overview of Running an Analysis
	Launching SPSS
	Getting Data into SPSS
	Selecting and Running a Procedure
	Viewing and Manipulating Results

	Working with the SPSS Scripting Facility
	Working with the SPSS Production Facility
	Working in Distributed Mode

	3 OLE Automation Quickstart
	What Is OLE Automation?
	OLE Terminology
	Using Objects, Properties, and Methods

	How Do I Use OLE Automation with SPSS?
	Deciding What You Want Your Application to Do
	Writing Application Code

	SPSS Objects, Methods, and Properties
	Objects
	Properties and Methods

	SPSS Type Libraries
	Object Browser and Online Help

	4 Scripting Quickstart
	What Is the SPSS Scripting Facility?
	Scripting versus OLE Automation Applications
	Script Window Features
	Types of Scripts

	How Do I Use Scripting?
	Deciding What You Want Your Script to Do
	Writing Script Code
	Running Scripts

	Examples
	Modifying a Starter Script
	Adding an Autoscript
	Writing an Original Script

	5 Additional Examples
	Edit All Pivot Tables
	Manage Multiple Instances of SPSS
	Output Item Index
	Manipulate Output Items
	Pivot Table Manipulation
	Correlation Matrix Diagonal
	Shorten Percentage Labels in Crosstabulation
	Make Wide Pivot Tables Narrow
	Display, Print, and Export Reports
	Display a Report in Microsoft Word
	Analyze Excel Data and Display Reports in Excel
	Production Facility Code
	Run Syntax Code
	Display Dictionary Information

	A SPSS Input/Output DLL
	Using the I/O DLL
	Writing an SPSS Data File
	Copying a Dictionary
	Appending Cases to a Existing SPSS Data File
	Reading an SPSS Data File
	Direct Access Input

	Working with SPSS Data Files
	Variable Names and String Values
	Accessing Variable and Value Labels
	System-Missing Value
	Measurement Level, Column Width, and Alignment
	Support for Documents

	Coding Your Program
	16-Bit Versus 32-Bit DLL
	Visual Basic Clients
	Borland C++
	Sample Programs

	DLL Procedure Reference
	spssAddMultRespDefC
	spssAddMultRespDefN
	spssCloseAppend
	spssCloseRead
	spssCloseWrite
	spssCommitCaseRecord
	spssCommitHeader
	spssConvertDate
	spssConvertSPSSDate
	spssConvertSPSSTime
	spssConvertTime
	spssCopyDocuments
	spssFreeDateVariables
	spssFreeMultRespDefs
	spssFreeVarCValueLabels
	spssFreeVariableSets
	spssFreeVarNValueLabels
	spssFreeVarNames
	spssGetCaseSize
	spssGetCaseWeightVar
	spssGetCompression
	spssGetDateVariables
	spssGetDEWFirst
	spssGetDEWInfo
	spssGetDEWNext
	spssGetEstimatedNofCases
	spssGetIdString
	spssGetMultRespDefs
	spssGetNumberofCases
	spssGetNumberofVariables
	spssGetReleaseInfo
	spssGetSystemString
	spssGetTextInfo
	spssGetTimeStamp
	spssGetValueChar
	spssGetValueNumeric
	spssGetVarAlignment
	spssGetVarCMissingValues
	spssGetVarColumnWidth
	spssGetVarCValueLabel
	spssGetVarCValueLabelLong
	spssGetVarCValueLabels
	spssGetVarHandle
	spssGetVariableSets
	spssGetVarInfo
	spssGetVarLabel
	spssGetVarLabelLong
	spssGetVarMeasureLevel
	spssGetVarNMissingValues
	spssGetVarNValueLabel
	spssGetVarNValueLabelLong
	spssGetVarNValueLabels
	spssGetVarNames
	spssGetVarPrintFormat
	spssGetVarWriteFormat
	spssHostSysmisVal
	spssLowHighVal
	spssOpenAppend
	spssOpenRead
	spssOpenWrite
	spssOpenWriteCopy
	spssQueryType7
	spssReadCaseRecord
	spssSeekNextCase
	spssSetCaseWeightVar
	spssSetCompression
	spssSetDateVariables
	spssSetDEWFirst
	spssSetDEWNext
	spssSetIdString
	spssSetMultRespDefs
	spssSetTextInfo
	spssSetValueChar
	spssSetValueNumeric
	spssSetVarAlignment
	spssSetVarCMissingValues
	spssSetVarColumnWidth
	spssSetVarCValueLabel
	spssSetVarCValueLabels
	spssSetVarLabel
	spssSetVarMeasureLevel
	spssSetVarNMissingValues
	spssSetVarNValueLabel
	spssSetVarNValueLabels
	spssSetVarName
	spssSetVarPrintFormat
	spssSetVarWriteFormat
	spssSetVariableSets
	spssSysmisVal
	spssWholeCaseIn
	spssWholeCaseOut

	B SPSS Third-Party API for SPSS for Windows
	Introduction
	Contents of the Registry
	Launch
	MenuType
	MenuPos
	ActionID
	SingleSeat
	TBOnly
	Menu
	MenuSeparator
	Minimize
	MenuEnable
	ReadFile
	DeleteFile
	Status of Files

	C Coding Conventions
	Variable and Procedure Names
	Variable Scope
	Object Variables
	Naming Constants

	Commenting Code
	Code Structure

	Index

