
SPSS® 11.0 Developer’s Guide

SPSS is a registered trademark and the other product names are the trademarks of SPSS Inc. for its proprietary computer
software. No material describing such software may be produced or distributed without the written permission of the owners
of the trademark and license rights in the software and the copyrights in the published materials.

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subdivision (c)(1)(ii) of The Rights in Technical Data and Computer
Software clause at 52.227-7013. Contractor/manufacturer is SPSS Inc., 233 South Wacker Drive, 11th Floor, Chicago, IL
60606-6307.

General notice: Other product names mentioned herein are used for identification purposes only and may be trademarks of
their respective companies.

TableLook is a trademark of SPSS Inc.
Windows is a registered trademark of Microsoft Corporation.
DataDirect, DataDirect Connect, INTERSOLV, and SequeLink are registered trademarks of MERANT Solutions Inc.
Portions of this product were created using LEADTOOLS © 1991-2000, LEAD Technologies, Inc. ALL RIGHTS
RESERVED.
LEAD, LEADTOOLS, and LEADVIEW are registered trademarks of LEAD Technologies, Inc.
Portions of this product were based on the work of the FreeType Team (http:\\www.freetype.org).

SPSS® 11.0 Developer’s Guide
Copyright © 2001 by SPSS Inc.
All rights reserved.
Printed in the United States of America.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

2

Chap te r

1
Overview

TheSPSS Developer’s Guideprovides information about the developer’s tools that
are included with the SPSS for Windows product. The tools can be used with the Base
system and all of its optional components.

Developer’s Tools

The developer’s tools include:

OLE Automation. A technology standard that makes it possible for you to write
programs that incorporate, or extend, the functionality of SPSS. OLE Automation
allows your application to access SPSS objects and manipulate them using methods
and properties. Applications can be written in a variety of programming languages,
such asVisual Basic and C++.

Third-party API. An application interface that enables you to configure SPSS so that
your programs can be launched from SPSS menus. Use the interface to give users
access to features not provided by SPSS. The working SPSS data file can be passed
to the third-party application as an optional parameter. The third-party API works by
recognizing specific Windows registry keys.

Input/output DLL. A dynamic link library that enables you to write applications that
read and write data in an SPSS data file format. This tool is often used to share data
between third-party applications and SPSS.

3

Overview

Production Facility. A Visual Basic application that uses SPSS OLE Automation to run
SPSS unattended and automatically produces output from regularly repeated, time-
consuming analyses.

Scripting facility. A built-in, VBA-compatible Sax Basic development environment
that allows developers to write and run scripts to automate SPSS tasks. You can use it
to produce output (like the Production Facility) and to do regularly repeated, time-
consuming editing of output. Scripting works by using OLE Automation to manipulate
SPSS objects.

MACRO and MATRIX procedures. Built-in SPSS commands that allow you to write
customized statistical and data manipulation procedures for use within SPSS.

Each component helps applications developers build upon SPSS for Windows,
although no single application will use all of them.

Documentation Map

You can work through this guide sequentially, or you can jump to topics that interest
you. Install SPSS for Windows before continuing so that you can access the online
Help and run the examples.

Programmer’s introduction to SPSS. You must understand how SPSS works before you
can be productive using the SPSS developer’s tools. Chapter 2 tells you what you need to
know about SPSS before you start developing applications with it.

OLE Automation quickstart. Learning how to write applications that manipulate SPSS
objects begins with an understanding of the object hierarchy. Chapter 3 describes the
object hierarchy and gives you enough information to start programming with the
SPSS application.

Scripting quickstart. The foundation of scripting is the OLE Automation object model.
Once you’re familiar with that, Chapter 4 gives you enough information to start writing
and running scripts within SPSS. It also introduces autoscripts, which can be used by
anyone who understands how to use SPSS.

Example scripts and applications. Chapter 5 describes the sample code shipped with
SPSS and tells you where to find the example scripts and applications.

Input/output DLL. Appendix A outlines the steps for developing an application using the
I/O DLL procedures and contains a reference guide for DLL procedures.

Third-party API. Appendix B is a guide to editing the Windows Registry to use the third-
party API.

4

Chapter 1

Tutorial. SPSS is distributed with a tutorial, which includes topics on customizing
SPSS and automating output production. To access the tutorials, from the SPSS menus
choose:

Help
Tutorial

Click the book icons to expand topics and selectCustomizing SPSS andAutomated

Production.

OLE Automation Help. SPSS is distributed with a complete online reference to all OLE
Automation objects, methods, and properties. Access the online Help by double-
clicking spssole.hlp in your SPSS installation directory.

Online help is accessible from most development environments. To get help for the
SPSS objects:

E Include the SPSS type libraries in your development project.

E Open your development environment’s object browser.

E Select the object, method, or property of interest and pressF1.

The OLE Automation Help file includes the object hierarchy diagram with links to
high-level objects. SelectTree View of objects from the Contents tab, and then click the
object of interest. You’ll get a Help topic that includes a code example, lists all methods
and properties for the object, and links to their Help topics.

Production Facility documentation and online Help. For an introduction to this topic, see
“Working with the SPSS Production Facility” on p. 24. For more information, see the
SPSS Base User’s Guide.

You can access online Help by double-clickingspssprod.hlp in your SPSS
installation directory. You can also launch SPSS, selectTopics from theHelp menu,
click the Index tab, and search on the word “production.”

Scripting facility documentation and online tips. For an introduction to this topic, see
“Working with the SPSS Scripting Facility” on p. 22. For more information, see theSPSS
Base User’s Guide.

You can access the online scripting tips while you are running SPSS. SelectScripting

Tips from theHelpmenu of a Script window. SelectScript Language for Sax Basic help.

MACRO and MATRIX command language. For more information, seeMacro Facility

Command Syntax andMatrix Command Syntax in the SPSS online Help, and see also the

5

Overview

SPSS Syntax Reference Guide. In theSPSS Syntax Reference Guide, macro syntax is
listed underDEFINE—!ENDDEFINE, and there are three macro examples in theSPSS
Syntax Reference Guideappendix “Using the Macro Facility.” Matrix syntax is listed
underMATRIX—!ENDMATRIX.

Using the SPSS Developer’s Tools

The developer’s tools offer a variety of integration strategies, including application
integration, customization, and automation.

Integration. Integrate your application into SPSS, or integrate SPSS into your
application. If you want your application to be launched by users from the SPSS
menus, use the third-party API tool. Once launched, your application will coexist with
SPSS until you close your application or SPSS. If you want to control SPSS from your
application, use OLE Automation.

Data transfer is possible. The third-party API will send a copy of the SPSS working
data file to your application, you can use the input/output DLL to have your application
create data files that SPSS can process, and you can use OLE Automation to get data
values from SPSS.

Customization. You can customize the SPSS user interface and output usingOLE
Automation and scripting. You can add your statistical and data manipulation
procedures to SPSS with theMACRO andMATRIX commands.

Automation. You can automate production of SPSS output using the Production Facility
and perform batch editing of output using the scripting facility.

More Information

SPSS product information. Check the SPSS Web site (http://www.spss.com) often for
product information, updates, patches, and news about planned software releases and
new products.

SPSS Script eXchange. Download useful scripts and share your scripts at the Script
eXchange Web site athttp://www.spss.com/software/spss/scriptexchange. Check the
site often for new scripts.

SPSS CD-ROM. Check the SPSS for Windows CD-ROM developer’s folder
(\spss\developer) for readme files and other late-breaking information.

6

Chapter 1

Visual Basic information. Microsoft maintains Web sites for Visual Basic
(http://msdn.microsoft.com/vbasic/default.asp) and Visual Basic for Applications
(http://msdn.microsoft.com/vba/default.asp). These sites include news, code examples,
and links to other useful sites.

Statement of Compatibility

SPSS makes no promises, expressed or implied, to keep future versions of the SPSS
for Windows or the developer’s tools compatible with applications built using the
current tools. Although it is in our best interest to keep your applications upgradable,
we cannot predict the future direction of our product line and the effect of that direction
on the applicability of the interfaces described in this guide.

Technical Support

SPSS provides technical support for the developer’s tools to customers who have
purchased the full version of SPSS software. (Support isnot provided for GradPack
customers.) You, the developer, are responsible for the support of all products built
using these tools.

Technical support for the developer’s tools includes helping a customer make the
software run as documented. This includes the installation process of our software,
printing, and operational problems when things don’t work as documented. Technical
support includes helping a customer use what is in the documentation to get a specific
task done by expanding on what is documented and giving an example of how to do it.
SPSS does not provide technical support for non-SPSS products used in conjunction
with the SPSS developer’s tools, such as Visual Basic, Sax Basic, or other applications.

Distributing Your Finished Application

You have the right to distribute the application that you have developed using the SPSS
developer’s tools. Users of your application must license their own copies of the SPSS
for Windows software by contacting the Sales Department at SPSS Inc. For any other
types of licensing or distribution arrangements, please contact SPSS Inc. directly.

In order for your application to run properly, you must have your users install the
SPSS for Windows software first and then install your application.

7

Chap te r

2
Programmer’s Introduction
to SPSS for Windows

For most of your applications, you will have more success using the SPSS developer’s
tools if you understand how SPSS works. If you intend only to integrate your
application into SPSS and have users launch it from an SPSS menu, you can skip this
chapter and proceed directly to the third-party API documentation in Appendix B.

When an end user works with SPSS, he or she can choose from two alternative
interfaces: the graphical user interface of menus and dialog boxes or the SPSS
command syntax language.

Functionally, the graphical interface and command language nearly overlap. You
can use command syntax to produce virtually any SPSS output, but you cannot use
commands to modify output. Output editing must bedone with the graphical interface
or through OLE Automation.

You can design your program to use the graphical interface, the command
language, or both. You can use OLE Automation to invoke SPSS dialog boxes or to
execute command syntax. When the output is produced, you can use OLE
Automation to edit the output objects. In general:

� Use SPSS command syntax or invoke SPSS dialog boxes to produce output (for
example, to run data transformations, statistical procedures, and charting
procedures).

� Use OLE Automation directly on output objects to format and edit your output.

This chapter introduces you to the basic features of SPSS, including:

� Working with SPSS windows and output

� Basic steps for running an analysis

� Working with the SPSS scripting facility

8

Chapter 2

� Working with the SPSS Production Facility

� Working in distributed mode

The emphasis in this chapter is on programming equivalents for performing various
end-user tasks. If you’re already familiar with SPSS and need an introduction to SPSS
OLE Automation, skip to Chapter 3.

Working with Windows and Output

SPSS for Windows provides a powerful statistical analysis and data management
system. It has specialized window types that allow users to request, display, and edit
the output they want. It also has specialized output items to display results.

Window Types

SPSS provides specialized window types for end users. In the SPSS object model,
these windows correspond to OLE Automation document objects that have methods
and properties that support most of the functionality found in the user interface. The
window types, their purpose for the end user, and the corresponding OLE Automation
object can be summarized as follows:

Data Editor. The working data file is displayed in the Data Editor, which is a
spreadsheet-like system for entering and editing data. The corresponding OLE
Automation object isISpssDataDoc.

Viewer. All statistical results, tables, charts, and other output are displayed in the
Viewer. The Viewer makes it easy to browse and edit your results, selectively show and
hide output, and move presentation-quality output items (for example, tables and
charts) between SPSS and other applications. The corresponding OLE Automation
object isISpssOutputDoc.

Draft Viewer. Output is displayed as simple text (instead of presentation-quality output
items) in the Draft Viewer. Editing is limited. The corresponding OLE Automation
object isISpssDraftDoc.

Syntax. Syntax is displayed and edited in the syntax window. You can type the syntax
directly or create command syntax by pasting dialog box choices into a syntax window,
where your selections appear in the form of command syntax. You can save these

9

Programmer’s Introduct ion to SPSS for Windows

commands in a file for use in subsequent SPSS sessions. The corresponding OLE
Automation object isISpssSyntaxDoc.

Script. The script window provides a programming environment for SPSS scripts.
Scripts allow you to customize and automate many tasks in SPSS. The script window
doesn’t have a corresponding OLE Automation object—it is a programming
environment.

Output Items

When an end user interacts with SPSS dialog boxes or runs command syntax, the user
produces output in a Viewer or Draft Viewer window. SPSS output consists of a
number of different types of items. These items correspond to OLE Automation
objects and can be manipulated with their respective methods and properties much like
they can be manipulated with the user interface. The SPSS output item types are:

Pivot tables. Many SPSS statistical procedures produce pivot table output that allows
users to view results in many different ways. Users can switch (pivot) row and column
variables, selectively show and hide categories, and change layers in multidimensional
tables. Pivot tables are produced from the Analyze menu. The corresponding OLE
Automation object isPivotTable.

Charts and interactive graphics. SPSS produces high-resolution charts, including pie
charts, bar charts, histograms, scatterplots, and 3-D graphics. Charts and interactive
graphs are produced by some statistical procedures on the Analyze menu and by the
Graphs menu. The corresponding OLE Automation objects areISpssChart (charts) and
ISpssIGraph (interactive graphs). SpssIGraph has a richer set of methods and properties
that support editing.

Text. A few SPSS statistical procedures produce text output. Warnings, logs, and
Viewer titles are text output. All tabular output to a Draft Viewer window is text. The
corresponding OLE Automation object isISpssRtf.

Map. Maps can be produced by SPSS if you have the Map option installed.

The object model description in Chapter 3 shows the window and output item objects
in the SPSS object hierarchy (see Figure 3-1).

10

Chapter 2

Overview of Running an Analysis

The basic steps to analyze data with SPSS are:

� Launch SPSS.

� Get data into SPSS. You can open a previously saved SPSS data file, read a
spreadsheet, database, or text data file, or enter data directly in the Data Editor.

� Select a procedure. You can select a procedure from the menus or use SPSS
command syntax to transform data, calculate statistics, and to create charts,
interactive graphs, and maps.

� Select the variables and run the procedure. The variables in the data file are
displayed in a dialog box for the procedure.

� View and manipulate the results. Results are displayed in the Viewer. You can
browse, edit, and pivot the output and save it for use at a later time.

Each step and its corresponding OLE Automation commands are discussed in the
following sections.

Launching SPSS

End users launch the SPSS application by selecting it from the Windows Start menu or
by double-clicking the application executable,spsswin.exe.

Figure 2-1
Launch SPSS from Windows Start menu

11

Programmer’s Introduct ion to SPSS for Windows

Programmers launch SPSS by creating the Application object. The Application object
is the container object where all other SPSS OLE Automation objects exist. Your
program can run SPSS and access its properties directly. The specific techniques for
creating the application vary depending on which programming language you are
using. In Visual Basic, you can use theCreateObject function:

Dim objSpssApp As ISpssApp
Set objSpssApp = CreateObject("SPSS.Application")

This example accomplishes the equivalent of the end-user action shown in Figure 2-1.
The first statement creates a variable namedobjSpssApp and assigns it to the
Application object class. The second statement starts SPSS and stores a reference to it
in theobjSpssApp variable.

Getting Data into SPSS

SPSS can handle data in a number of spreadsheet, database, and text formats. It can
also read data contained in databases using ODBC drivers. Users can open data files
using the File menu or SPSS command syntax.

Figure 2-2
Open data file from menu

12

Chapter 2

For programmers, the options for bringing data into SPSS are:

� For SPSS (*.sav) data files, you can use theOpenDataDoc method on the
Application object. For example:

Set objDataDoc = objSpssApp.OpenDataDoc("d:\spss10\employee data.sav")

This example accomplishes the equivalent of the end-user action shown in
Figure 2-2.

� For data files saved in any of the formats recognized by SPSS (including SPSS data
files, all spreadsheet and database formats, and ODBC), use SPSS command
syntax. (For an introduction to command syntax, see “Running Procedures with
SPSS Command Syntax” on p. 14 and “Creating Command Syntax” on p. 16.)

� If necessary, you can paste data from the Windows clipboard by using thePaste
method on the Data Document object. You may lose precision with this method
because the values pasted are displayed values—often rounded to one or two
decimal places—rather than the actual values stored in memory.

For instructions on how to use the I/O DLL to read and write SPSS data files directly,
see Appendix A.

Selecting and Running a Procedure

End users can select and run procedures in SPSS either by choosing dialog boxes from
the menus or by using command syntax. Both of these methods are available to
programmers through OLE Automation.

Before writing an application, programmers, like end users, must decide what
procedures they want to run. Use the graphical interface to accomplish the tasks that
you want your application to perform. As you work with the interface, consider at each
step which procedures, output items, and window types you are using. This knowledge,
together with the information that follows in this chapter and in Chapter 3, will enable
you to start programming with SPSS.

13

Programmer’s Introduct ion to SPSS for Windows

Figure 2-3
Selecting procedures from menus

Figure 2-4
Selecting variables for analysis

14

Chapter 2

Running Procedures with SPSS Dialog Boxes

You can run procedures by selecting dialog boxes from the menus. If you want your
application to present dialog boxes to your end user (and allow end-user intervention),
you can invoke many SPSS dialog boxes through OLE Automation by using the
InvokeDialogAndExecuteSyntax method on the Data Document object. The
InvokeDialogAndExecuteSyntax method is applied to the Data Document object because
SPSS requires data before these dialog boxes can be invoked. This example opens the
Descriptives dialog box, as shown in Figure 2-4:

Dim strPath as String
strPath = "analyze>descriptive statistics>descriptives"
objDataDoc.InvokeDialogAndExecuteSyntax (strPath, SpssWindowParent, True)

ThestrPath parameter contains the menu path to the dialog box that you want to invoke.
For example, the dialog box for the Descriptives procedure can be found in the user
interface on the Descriptive Statistics submenu of the Analyze menu. Once your
application has opened the dialog box, the end user selects variables and options as if
running SPSS in the normal manner. When the user clicksOK, SPSS executes the
commands and then returns control to your program.

This method works on most dialog boxes invoked from the Analyze and Graphs
menus and on some dialog boxes invoked from the Transform and Data menus. (In
general, if a dialog box has aPastebutton, you can use this method.)

Running Procedures with SPSS Command Syntax

The SPSS command language is an alternative to the SPSS dialog box interface.
Command syntax provides complete access to all statistical and graphical procedures,
data transformations, and most file operations. While most end users find the menus
and dialog boxes easier to use, command syntax is a powerful tool. It provides access
to additional procedures and options not available from the menus and makes it
possible to save command streams in a syntax file so that they can be rerun.

15

Programmer’s Introduct ion to SPSS for Windows

Figure 2-5
Syntax window displaying command syntax

Command syntax is also a powerful tool for programmers. You can execute any valid
SPSS command from within your application, allowing you full access to SPSS’s
capabilities. Always test your syntax by running it interactively from a syntax window
before you incorporate it into your application. Use theExecuteCommands method on
the SPSS Application object. This example runs the syntax shown in Figure 2-5:

Dim strCommand as String
strCommand = strCommand + "DESCRIPTIVES"
strCommand = strCommand + " VARIABLES=salary salbegin"
strCommand = strCommand + " /STATISTICS=MEAN STDDEV MIN MAX ."
objSpssApp.ExecuteCommands strCommand, True

Rather than hard-coding the variables and statistics selections as shown, you can
design your application to build the syntax instrCommand based on user input.

If you want to execute a long stream of commands or separate syntax from your
code, you can save the commands in a syntax file (*.sps) and use theExecuteInclude

method on the SPSS Application object.ExecuteInclude works like the
ExecuteCommands method except that it takes the name of a syntax file, rather than a
string variable, as a parameter. This example runs the syntax file shown in Figure 2-5:

Dim strFilename as String
strFilename = "d:\spss10\myjob.sps"
objSpssApp.ExecuteInclude strFilename, False

16

Chapter 2

When running syntax commands usingExecuteCommands methods, specify either
True (for synchronous execution) or use aWhile-Wend loop to check if SPSS is busy. If
you use theRun method on theSyntaxDoc object, you must use theWhile-Wend loop
because synchronous mode is not available for this method.

Using command syntax allows your application greater flexibility and control than
invoking dialog boxes from the graphical interface and makes it possible to run SPSS
without the user’s knowledge.

Running Procedures with the Production Facility

SPSS includes a separate application, the SPSS Production Facility, that can be used
by end users and programmers to automate the running of syntax. The Production
Facility is introduced in “Working with the SPSS Production Facility” on p. 24.

Creating Command Syntax

If you decide to use command syntax in your application, you can write it yourself by
referring to theSPSS Syntax Reference Guide; however, writing syntax can get
cumbersome. You have two other options: pasting the syntax from dialog boxes and
copying syntax from SPSS log or journal files.

Pasting syntax from dialog boxes. SPSS generates command syntax from a dialog box
when you click thePaste button. If you are writing code in an SPSS script window,
SPSS will paste the required code and the syntax. To paste syntax and script code:

E Start SPSS and from the menus choose:

File
New

Script

E Or, open an existing script (.sbs) file.

E In the script window, choose the desired procedure from the File, Analyze, or Graphs
menu.

17

Programmer’s Introduct ion to SPSS for Windows

Figure 2-6
Pasting command code into script window

E Make selections in the dialog box.

E Click Paste to paste the corresponding code statement commands into the script
window.

The pasted code should run without modification in Sax Basic (the SPSS scripting
language) and Visual Basic. In other languages, changes may be necessary.

Note: If you open the dialog box from any window other than the script window, the
commands are pasted into a syntax window. Pasting to a script window works with all

18

Chapter 2

of the dialog boxes on the Analyze and Graphs menus and many commands on the File
menu. You can also paste commands from many of the dialog boxes on theTransform,
andFile menus, although they will be pasted into a syntax window rather than a script
window. You will have to modify the code accordingly.

Copying syntax from the output log or journal file. SPSS keeps a log of your work while
the program is running. Whether you run procedures by selecting them from the menus
or by submitting commands, the corresponding commands are logged in the journal
file. By default, the journal file is stored in your Windows temporary directory in
spss.jnl. You can also display the commands in the Viewer.

To record commands in the journal:

E From the menus choose:

Edit
Options...

E Click theGeneral tab.

E Click Record syntax in journal.

To display commands in the Viewer:

E From the menus choose:

Edit
Options...

E Click theViewer tab.

E SelectLog and clickShown.

You can use the journal file and output log as sources for building syntax files or simply
view them to reverse-engineer the commands needed for a particular task. For more
information, see theSPSS Base User’s Guideand the online Help.

19

Programmer’s Introduct ion to SPSS for Windows

Figure 2-7
Command syntax displayed in output log

Viewing and Manipulating Results

Whether procedures are run from the menus or with command syntax, the results are
displayed in the Viewer, where end users can browse their results, selectively show and
hide output, and modify their pivot tables, charts, and text output by direct
manipulation. End users scroll the Viewer tree, select the item of interest, and double-
click to activate it. Then they use the graphical interface to make changes to fonts,
colors, and other attributes.

20

Chapter 2

Figure 2-8
Viewing results in Viewer

Figure 2-9
Activated pivot table object displayed in Viewer

21

Programmer’s Introduct ion to SPSS for Windows

Programmers use OLE Automation to view and manipulate output. Most of the Viewer
functionality is available through OLE Automation, including the ability to select and
activate an item of interest and full capabilities for editing pivot tables, interactive
graphics, and text output. You modify output by getting an output document (the OLE
Automation equivalent of the Viewer window), looping through the output items to
find the item of interest, activating the item of interest, and then manipulating its
methods and properties. For example, to rotate a pivot table’s column labels:

' Declare variables.
Dim objSpssApp As ISpssApp
Dim objOutputDoc as ISpssOutputDoc
Dim objOutputItems as ISpssItems

' Start the SPSS application.
Set objSpssApp = CreateObject("SPSS.Application")

' Get an output document that contains a pivot table.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
Set objOutputItems = objOutputDoc.Items

' Get the output items collection and read the number of items.
Dim objOutputItem as ISpssItem
Dim objPivotTable as PivotTable
Dim intCount as Integer, I As Integer
intCount = objOutputItems.Count

' Loops through the items, testing each to see if it is a pivot table.
For I = 0 To intCount - 1

Set objOutputItem = objOutputItems.GetItem (I)
If objOutputItem.SpssType = SpssPivot Then

' Activate the pivot table.
objPivotTable = objOutputItem.ActivateTable
' Rotate the column labels
objPivotTable.RotateColumnLabels=True

' Insert additional editing here.
Exit For

End If
Next

OLE Automation doesn’t support editing of non-interactive charts (ISpssChart), so use
interactive graphs if possible (ISpssIGraph). If you choose to use non-interactive charts,
you can export them as graphics files in a number of formats. You can also control
some aspects of their appearance by specifying a chart template when the chart is

22

Chapter 2

created. For more information on chart templates, see theSPSS Base User’s Guideand
the online Help.

The SPSS scripting facility, which is introduced in the next section, provides
another way to automate output editing.

Working with the SPSS Scripting Facility

SPSS has its own internal scripting facility, shown in Figure 2-10, which uses OLE
Automation to automateoutput productionandeditingfrom within SPSS. Scripts are
written in Sax Basic, a language similar to Visual Basic. Scripting is for programmers
and advanced end users who want to automate tasks from within SPSS, as opposed to
programmers who want to build the SPSS functionality into their own applications.
You work with scripts by opening a script window interactively in SPSS. You write,
edit, and run the script from this window.

Despite some obvious differences between scripting and external programming
(scripts run from within SPSS, so that the user doesn’t have to worry about a compiler
or starting or creating an interface to the application), both use similar techniques,
often for the same goals. In principle, code developed for scripts should also run in
Visual Basic, assuming you make the necessary adjustments.

SPSS includes a number of scripts that are ready to run, along with starter scripts
that you can edit to create your own scripts or programs. The SPSS scripts are in the
SPSS for Windows installation directory in\Scripts (see “Edit All Pivot Tables” on p.
86 for an example script). Additional scripts are available on the SPSS Web site at
http://www.spss.com/software/spss/scriptexchange and on the SPSS for Windows
CD-ROM in \Spss Products and Services\SPSS Script eXchange.

For more information on the scripting facility, see Chapter 4 of this document, the
“Scripting Facility” chapter in theSPSS Base User’s Guide,and the SPSS online
tutorials and Help system. To access the tutorials, selectTutorial from the Help menu.
Online scripting help can be found by selectingScripting Tips from theHelpmenu of a
script window.

23

Programmer’s Introduct ion to SPSS for Windows

Figure 2-10
Script window

Script files and syntax files. Syntax files (*.sps) are not the same as script files (*.sbs).
Syntax files have commands written in the SPSS command language that allow you to
run SPSS statistical procedures and data transformations (see Figure 2-5). Scripts are
written in Sax Basic and allow you to run syntax and manipulate SPSS program objects
through OLE Automation.

24

Chapter 2

Working with the SPSS Production Facility

The SPSS Production Facility, shown in Figure 2-11, is launched from the Windows
Start menu and uses syntax to automate production of output from SPSS. Programmers
and advanced end users write, edit, and run the production jobs from this application.
A production job is a collection of syntax files and specifications about how to run the
job.

The SPSS Production Facility is a Visual Basic application that makes extensive use
of SPSS OLE Automation. For more information about the Production Facility code,
see “Production Facility Code” on p.101. For more information on how the Production
Facility works, see the “Production Facility” chapter in theSPSS Base User’s Guide
and the online Help.

SPSS file types and production. A production job (*.spp) includes one or more syntax
files (*.sps) and produces one output file (*.spo).

Figure 2-11
Production Facility dialog box

25

Programmer’s Introduct ion to SPSS for Windows

Working in Distributed Mode

Distributed analysis allows end users to run memory-intensive analyses on a server
computer instead of a desktop computer. It requires a server version of SPSS. End users
work in distributed mode by selectingSwitch Server from the File menu and then
logging onto a remote server.

Programmers use OLE Automation to create aclient serverApplication object. The
object is created in the same way that the SPSS Application object is created except
that the Application object name is different. This example switches SPSS to
distributed mode, as shown in Figure 2-12:

Dim objCSApp As CS_Application
Set objCSApp = CreateObject("SPSS.CS_Application")

The next step is to log the client server Application object onto a server. This is done
by adding your server name to a server’s collection and then logging on. For example:

'Add a server.
Dim objServers As ISpssServers
objServers.Add "inet:myserver:3010"

'Get the server.
Dim objServer As ISpssServer
Set objServer = objServers.First

'Log the server in to the SPSS Server with an ID and password.
objServer.Connect "myuserid", "mypasswd", 0

26

Chapter 2

Figure 2-12
Server Login dialog box

The client server Application object has the same methods and properties as the SPSS
application. Once you’ve created it, you work with it in the same way. The only
difference is where the processing takes place. For a client server application, the
processing takes place on the remote server.

Production mode also supports distributed analysis. You can log onto a remote
server from theOptionsdialog box, as shown in Figure 2-13, and then run the
production job as usual.

27

Programmer’s Introduct ion to SPSS for Windows

Figure 2-13
Production Facility options

28

Chap te r

3
OLE Automation Quickstart

This chapter introduces you to using OLE Automation with SPSS. It begins with an
overview of OLE Automation and a code example that builds on the end-user tasks
introduced in Chapter 2. It continues with descriptions of and programming examples
for the SPSS OLE objects. It ends with an introduction to the SPSS object methods
and properties and the SPSS type libraries. If you are already familiar with SPSS for
Windows, this is a good place to start learning about SPSS OLE Automation. If you’re
unfamiliar with SPSS for Windows, read Chapter 2 first.

What Is OLE Automation?

If you have worked in Visual Basic or C++, you already know how to use objects that
the program provides, such as command buttons, forms, and fields. OLE Automation
is a technology standard that also allows you to use objects from other applications in
your program. Because SPSS is fully enabled as an OLE Automation server, you can
include SPSS objects as components of your program. Your program can run SPSS
and take advantage of its extensive analytic capabilities.

OLE Automation is supported by a number of programming languages, including
Visual Basic and C++. While the specific techniques for creating the application and
accessing objects vary depending on the programming language, the techniques
described in this chapter for manipulating SPSS objects are basically the same.

29

OLE Automation Quickstart

OLE Terminology

OLE Automation provides a standard set of interfaces for applications to provide
objects to other applications, development tools, and macro languages. OLE takes
advantage of, and is part of, the more general Component Object Model (COM). An
object, in programming terminology, is a combination of code and data that can be
treated as a unit; for example, a control, an item in a document, a document, or an
application. An OLE object is also a component (or COM object).

All SPSS objects reside within the SPSS Application object, called theOLE
container. Your program runs SPSS and then accesses the objects that it needs. The
program that exposes the objects—in this case SPSS—is known as theOLE
Automation server. The program that uses the objects—your program—is theOLE
Automation client.

Figure 3-1 on p. 32 shows the types of objects, calledobject classes, that SPSS
makes available, or exposes, to OLE Automation clients. Each object class has its own
attributes and commands, calledproperties andmethods, that define what you can do
with that object.

Figure 3-1 also shows how the objects are related to each other hierarchically. That
is important because many objects can exist only inside other objects. When you want
to access objects lower in the hierarchy, you have to access the objects above them
first, starting with the Application object.

SPSS object classes include the application itself, within which all other objects are
contained; the file information object, which contains information about the SPSS data
file; and objects for the different types of documents and output that SPSS produces.

Using Objects, Properties, and Methods

Like real-world objects, SPSS OLE Automation objects have features and uses. In
programming terminology, the features are referred to asproperties, and the uses are
referred to asmethods. Each object class has specific properties and methods that
define what you can do with that object.

Object Property Method

pencil (real world) Hardness
Color

Write
Erase

pivot table (SPSS)
TextFont
DataCellWidths
CaptionText

SelectTable
ClearSelection
HideFootnotes

30

Chapter 3

Working with objects is a two-step process. First you get a reference to the object. Then
you use its properties and methods to do something to the object.

How Do I Use OLE Automation with SPSS?

When you use SPSS OLE Automation you:

E Decide what you want your application to do with SPSS.

E Write the application code.

Deciding What You Want Your Application to Do

What Tasks Can Be Automated?

You can use OLE Automation to do most of the things you do when running SPSS
interactively, including:

� Open and save SPSS data files and access data file information.

� Perform complex data manipulations and transformations using SPSS command
syntax.

� Run SPSS statistical and graphical procedures to produce pivot tables, charts, and
other statistical output.

� Automate repetitive tasks.

� Customize and manipulate output in the SPSS Viewer, including manipulations
based on values in the output.

� Export output in HTML format for publication on the World Wide Web.

� Export charts as graphic files in a number of formats.

� Set options to customize the SPSS environment.

How Do I Figure Out Which Objects to Use?

The easiest way to figure out what you want to do with SPSS is to use it interactively
with the dialog box user interface. Go through the sequence you want to run in your

31

OLE Automation Quickstart

application. At each step, think about the objects, methods, and properties that are in
use. Table 3-1 shows the correspondence between high-level automation objects and
the SPSS user interface.

Note: TheViewer window is where the interactive user sees and manipulates output—
it corresponds to theOutput Document object, even though the names are different.
This is because the window name in the user interface changed after the OLE
Automation interface was defined.

Figure 3-1 shows the complete SPSS object model. “Object Browser and Online Help”
on p. 69 explains how to browse and get Help on SPSS objects, methods, and properties
while you are writing your application.

Table 3-1
High-level OLE Automation objects and corresponding user interface

Object User Interface

Application (ISpssApp) SPSS for Windows application

Options (ISpssOptions) Settings in the Options dialog box (Edit menu)

Spss Info (ISpssInfo) None

Documents (ISpssDocuments) All windows open in SPSS

Data Document (ISpssDataDoc) Data Editor window

Syntax Document (ISpssSyntaxDoc) Syntax window

Draft Document (ISpssDraftDoc) Draft Viewer window

Output Document (ISpssOutputDoc) Viewer window

Output Items (ISpssItems) All items in the Viewer window

Pivot Table (PivotTable) Produced by many items on the Analyze menu

IGraph (ISpssIGraph) Produced by items on the Graphs > Interactive
submenu

Text (ISpssRtf) Produced by some items on the Analyze menu

Chart (ISpssChart) Produced by items on the Graphs menu

Map Produced by items on the Graphs > Map submenu

32

Chapter 3

Figure 3-1
SPSS object model

Example of Interactive Use and Corresponding OLE Objects

The following steps show a simple sequence of actions that you can do with the SPSS
user interface and the corresponding OLE Automation objects. Detailed code for this
example is in “Writing Application Code” on p. 34.

E Launch SPSS.

User interface:

From the Windows Start menu choose:

Programs
SPSS for Windows

SPSS for Windows

33

OLE Automation Quickstart

OLE Automation:

Dim objSpssApp As ISpssApp
Set objSpssApp = CreateObject("SPSS.Application")

E Open a data file. For example, open the employee data file.

User interface:

From the SPSS menus choose:

File
Open

Data...

Selectemployee data.sav.

OLE Automation:

Dim objDataDoc As ISpssDataDoc
Set objDataDoc = objSpssApp.OpenDatadoc ("c:\spss\employee data.sav")

E Open a dialog box. For example, open the Frequencies dialog box.

User interface:

From the SPSS menus choose:

Analyze
Descriptive Statistics

Frequencies...

OLE Automation:

objDataDoc.InvokeDialogAndExecuteSyntax ("analyze>descriptive statistics>frequencies",
SpssWindowParent, True)

E Save output.

User interface:

Click in the Viewer and from the menus choose:

File
Save

34

Chapter 3

OLE Automation:

Dim objOutputDoc as ISpssOutputDoc
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.SaveAs ("c:\spss\output1.spo")

Deciding the Extent of SPSS Integration into Your Application

Your programs can run simultaneously with SPSS on the user’s desktop (and take
advantage of the SPSS user interface), or SPSS can run in the background. The level
of integration is up to you.

If you want to take advantage of the SPSS user interface, write applications that
open dialog boxes using theInvokeDialogAndExecuteSyntax method on the Data
Document object and use theVisible property on the document objects to make the
SPSS windows visible.

If you want to run SPSS in the background, write applications that submit syntax.
For example, use theExecuteCommands method on the Application object.

Writing Application Code

When you’ve decided how your application will use SPSS and the extent of integration
of SPSS into your application, it is time to start writing code. Writing code is typically
done in a development environment that is tailored to the programming language that
you are using. In this section, we will proceed through the same basic steps as in the
example on p. 32, using Visual Basic as the programming language. The code starts
SPSS, opens a data file, runs a procedure, edits and saves the procedure’s output, and
exits SPSS. You may find it useful to refer to the SPSS OLE object hierarchy in Figure
3-1 as you read through the example.

This example demonstrates a number of important OLE Automation techniques,
including how to create the application and how to use properties or methods of higher-
level objects to get at objects lower in the object hierarchy. The example also shows
how to run a statistical procedure using SPSS command syntax. (See Chapter 2 for an
introduction to SPSS command syntax.)

To write the code:

E Include the SPSS type libraries in your project. In Visual Basic, selectReferences from
the Project menu. The SPSS type libraries are listed and described in “SPSS Type
Libraries” on p. 69.

35

OLE Automation Quickstart

E Declare variables. Although not always strictly required, it is a good idea to declare all
variables before using them:

' Application object for SPSS.
Dim objSpssApp As ISpssApp

' Data Document object for the data file.
Dim objDataDoc as ISpssDataDoc

' Output Document object to store the output.
Dim objOutputDoc As ISpssOutputDoc

' String to store the syntax for the procedure.
Dim strCommand As String

By convention, the name of each variable indicates its type. Object variable names
begin withobj, integer variables begin withint, and string variables begin withstr.
(These conventions are described more fully in Appendix C.)

For object variables, the name also indicates the object class to which the variable
is assigned. For example, the first declaration above creates an object variable named
objSpssApp and specifies its type asISpssApp (belonging to the Application object
class). The variable does not have a value until the application is actually created—all
the statement does is declare that the variable exists.

Note: You can declare your object variables as an object class (such asISpssApp or
ISpssOutputDoc) only if your programming language supports a method calledvtable
binding, which allows for early binding of variables at compilation time. Most
programs support this method, but if the variable declarations produce an error, declare
the variables asObject. For example,

Dim objSpssApp As Object
Dim objOutputDoc As Object

E Create the SPSS application. Creating the application means to start SPSS and get a
reference to the Application object so that you can access its properties and methods.
The specific techniques for creating the application vary, depending on what
programming language you are using. In Visual Basic, you can use theCreateObject

function:

Set objSpssApp = CreateObject("SPSS.Application")

This statement starts SPSS and it stores a reference to the Application object in the
variable.

36

Chapter 3

E Open a data file. You work with SPSS by getting its objects. Togetan object means to
create a reference to the object so that you can use properties and methods to do
something. Each object reference that you get is stored in a variable. You have already
seen how to create (or get) the Application object using Visual Basic’sCreateObject

function. However, most other SPSS objects cannot be created directly. Instead, you
get them by using properties and methods on other, high-level objects. For example,
once you have created the Application object, you can use theOpenDataDoc method to
create a Data Document object and open a data file:

Set objDataDoc = objSpssApp.OpenDatadoc ("c:\spss\employee data.sav")

SPSS requires data before it will run procedures.

E Run procedures. Next, analyze the data. For this example, SPSS will run in the
background and we’ll submit syntax. The results of the analysis are placed in an output
document, so we will create that object, too:

Set objOutputDoc = objSpssApp.NewOutputDoc

' Create the procedure command syntax
strCommand = strCommand + "DESCRIPTIVES"
strCommand = strCommand + " VARIABLES=salary salbegin"
strCommand = strCommand + " /STATISTICS=MEAN STDDEV MIN MAX ."

' Run the procedure.
objSpssApp.ExecuteCommands strCommand, True

E Modify the output. Now the analysis is complete and the results are in the Output
Document object, ready for modification:

' SPSS can have more than one output document. This gets the one that is
' designated to receive output.
Set objOutputDoc=objSpssApp.GetDesignatedOutputDoc

' Clear the current selection.
objOutputDoc.ClearSelection

' Select all notes in the output document.
objOutputDoc.SelectAllNotes

' Delete the selection (all notes).
objOutputDoc.Remove

37

OLE Automation Quickstart

In this step, we modified a collection of output items of the same type. You may want
to edit an individual output item. In general, with SPSS OLE Automation you use
properties or methods on higher-level objects to get at the objects beneath. The Output
Document object is a good example of this. It has a property calledItems that returns
the Output Items Collection:

Set objOutputItems = objOutputDoc.Items()

And the Output Items Collection has a method calledGetItem that returns an individual
output item:

Set objOutputItem = objOutputItems.GetItem(2)

E Save the output. Finally, save the edited output:

objOutputDoc.SaveAs ("c:\myoutput\myoutput.spo")

E Close SPSS. When you have finished using the SPSS Application object, you can close
it by:

objSpssApp.Quit

SPSS Objects, Methods, and Properties

In Figure 3-1, you saw the object classes that SPSS exposes to OLE Automation clients.
If you use SPSS or have read Chapter 2, most of these object types should be familiar
to you and you can probably guess the properties and methods associated with them.

The object model also shows how the objects are related to each other, which is
important because most of the objects exist only inside other objects. You start by
creating the Application object and navigate down the object hierarchy tree. Lower-
level objects, such as data cells and labels, exist only as part of a higher-level object
and cannot be created directly. For example, to change or format column labels in a
pivot table, you need to get all of the objects above and including the Column Labels
object.

Note: The online Help for SPSS OLE Automation contains the same diagram, with
links to Help topics for each object, including Help for each object’s methods and
properties. “Object Browser and Online Help” on p. 69 describes how to access the
online Help.

38

Chapter 3

Objects

In the following sections, each high-level object is described and its use is
demonstrated by an example. The examples are written in Visual Basic. There is some
overlap in the code for the examples—this ensures that each can be run independently.
SPSS is made visible so that you can see what the example does. In a real-life
application, you may choose to hide SPSS. The code for these examples is included on
the SPSS for Windows CD-ROM in the Visual Basic project file
\SPSS\Developer\Programs\OLE Quickstart\spssole.vbp. To get the most from the
examples, open the project in Visual Basic and step through the code. Chapter 5
describes additional sample programs supplied with the developer’s tools.

Figure 3-2
Example Visual Basic project user interface (spssole.vpb)

Application Object (ISpssApp)

The Application object is the container object inside of which all other SPSS objects
exist. It is a user-creatable object, meaning that your program can run SPSS and access

39

OLE Automation Quickstart

its properties directly. Other objects must exist inside higher-level objects. Access them
by applying properties and methods on these higher-level objects. The Application
object has properties to access the SPSS Options object, the File Information object,
and the Documents object.

To get the Application object, declare an object variable asISpssApp and create the
object:

Dim objSpssApp as ISpssApp
Set objSpssApp = CreateObject("SPSS.Application")

By default, SPSS runs in the background when created through OLE Automation. You
can use theVisible property to display the Data Editor, Viewer, or syntax windows:

objDataDoc.Visible = True

To avoid leaving SPSS running in the background, use theQuit method to exit SPSS
before closing your program:

objSpssApp.Quit

The SPSS OLE Automation server does not alert you before overwriting files when it
exits.

Figure 3-3 shows a simple example that starts SPSS, opens a data file, and produces a
table of descriptive statistics. Figure 3-4 shows the result of running the example—the
descriptive statistics are displayed in the Viewer.

Figure 3-3
Start SPSS Application object and run Descriptives procedure

'Example 1: Start SPSS and run Descriptives.
Private Sub cmdExample1_Click()

'Declare object variables.
Dim objSpssApp As ISpssApp
Dim strAppPath As String
Dim strFileName As String
Dim objOutputDoc As ISpssOutputDoc
Dim objDataDoc As ISpssDataDoc
Dim strCommand As String

40

Chapter 3

'Create the application (start SPSS).
Set objSpssApp = CreateObject("SPSS.Application")

'Open a new Output Navigator.
Set objOutputDoc = objSpssApp.NewOutputDoc

'Get the SPSS installation directory.
' This example uses an example data file that was installed with SPSS.
strAppPath = objSpssApp.GetSPSSPath

'Build a path to the data file you want to open.
strFileName = strAppPath & "employee data.sav"

'Open the data file.
Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)

'Display the Data Editor.
objDataDoc.Visible = True

'Run Descriptives procedure using command syntax.
strCommand = strCommand + "DESCRIPTIVES"
strCommand = strCommand + " VARIABLES=salary salbegin"
strCommand = strCommand + " /STATISTICS=MEAN STDDEV MIN MAX ."
objSpssApp.ExecuteCommands strCommand, True

'Display Viewer window.
objOutputDoc.Visible = True
End Sub

41

OLE Automation Quickstart

Figure 3-4
Viewer displaying Descriptives results

Getting versus Creating the SPSS Application Object

Beginning with SPSS 10.0, multiple instances of the SPSS application can run on a
computer, so your code needs to check to see if the SPSS application is already
running. If the application is running, useGetObject. If the application is not running
useCreateObject. Here’s an example:

Public Function GetSpss() As Application
On Error Resume Next

'Get a reference to existing SPSS.
Set GetSpss = GetObject(Class:="Spss.Application")
Debug.Print Err; Err.Description

'There will be an error if no SPSS is running or if
' an SPSS version prior to 10.0 is running.
' If there is an error then we will create the SPSS application object.
' For SPSS versions prior to 10.0, CreateObject gets the running instance.
If Err Then

Err.Clear
Set GetSpss = CreateObject("Spss.Application")

End If
End Function

42

Chapter 3

Options Object (ISpssOptions)

The Options object allows you to specify options for the Viewer, charts, pivot tables,
and data and currency formats. In the user interface, these settings are specified in the
Options dialog box, which is accessed from the Edit menu.

To get the Options object, declare an object variable asISpssOptions and set it to the
Options property of the Application object:

Dim objSPSSOptions as ISpssOptions
Set objSPSSOptions = objSpssApp.Options

Figure 3-5 shows an example that starts SPSS and changes the measurement system
from inches to points. Figure 3-6 shows the Options dialog box with the changed
measurement system.

Figure 3-5
Change measurement system with Options object

'Example 3: Change the measurement system.
Private Sub cmdExample3_Click()

' Declare variables.
Dim objSpssApp As ISpssApp
Dim objDataDoc As ISpssDataDoc
Dim objSpssOptions As ISpssOptions

'Create the SPSS application.
Set objSpssApp = CreateObject("SPSS.Application")

'Open a new Data Editor.
Set objDataDoc = objSpssApp.NewDataDoc

'Display Data Editor.
objDataDoc.Visible = True

'Get the Options object.
Set objSpssOptions = objSpssApp.Options

'Set measurement system to points (it is inches by default).
objSpssOptions.MeasurementSystem = 0

'If SPSS is running hidden, changed options settings are
' not saved beyond the current session.
' In this example we ran SPSS visible, so the change is saved.
'Be sure to set it back to inches if that is what you use.

End Sub

43

OLE Automation Quickstart

Figure 3-6
SPSS Options dialog box

Documents Collection Object (ISpssDocuments)

The Documents Collection object provides access to the collection of SPSS
documents, including data, output, and syntax documents. The object has properties
that return the number of open documents of each type and methods to get documents
of each type. This is one of several collection objects that exist primarily to allow you
to get other objects.

To get the Documents Collection object, declare an object variable as
ISpssDocuments and set it to theDocuments property of the Application object:

Dim objDocuments as ISpssDocuments
Set objDocuments = objSpssApp.Documents

44

Chapter 3

Figure 3-7 shows an example that starts SPSS and uses the Documents Collection to
cascade windows. Figure 3-8 shows the cascaded windows.

Figure 3-7
Cascade Viewer windows with Documents Collection object

'Example 4: Cascade Viewer windows.
Private Sub cmdExample4_Click()

'Declare variables.
Dim objSpssApp As ISpssApp
Dim objDocuments As ISpssDocuments
Dim objOutputDoc As ISpssOutputDoc

'Create the SPSS application.
Set objSpssApp = CreateObject("SPSS.Application")

'Open three Viewer windows.
Set objOutputDoc = objSpssApp.NewOutputDoc
Set objOutputDoc = objSpssApp.NewOutputDoc
Set objOutputDoc = objSpssApp.NewOutputDoc

'Get the documents collection.
Set objDocuments = objSpssApp.Documents

'Loop through the documents collection, cascade the
' Viewer windows, and make them visible.
Dim intCount As Integer
Dim intWindowPos As Integer
intWindowPos = 40
intCount = objDocuments.OutputDocCount
For I = 0 To intCount - 1

intWindowPos = intWindowPos + 60
Set objOutputDoc = objDocuments.GetOutputDoc(I)
objOutputDoc.Top = intWindowPos
objOutputDoc.Left = intWindowPos
objOutputDoc.Visible = True

Next

End Sub

45

OLE Automation Quickstart

Figure 3-8
Cascaded Viewer windows

File Information Object (ISpssInfo)

The File Information object provides access to dictionary information on SPSS data
files, including variable names, labels, sequential position of each variable in the file,
print and write formats, missing values, and value labels.

To get the File Information object, declare an object variable asISpssInfo and set it
to theSpssInfo property of the Application object:

Dim objSpssInfo as ISpssInfo
Set objSpssInfo = objSpssApp.SpssInfo

You can also use theGetVariableInfo method on the Data Document to retrieve
complete dictionary information with one call. Depending on your needs,
GetVariableInfo can be more efficient than using the SPSS File Information object.

Figure 3-9 shows an example that starts SPSS and gets the number of variables in
from an open data file. First it uses the File Information object and then it uses the Data
Document object.

Figure 3-9
Get number of variables

'Example 5: Get the number of variables.
Private Sub cmdExample5_Click()

'Declare variables
Dim objSpssApp As ISpssApp
Dim objDataDoc As ISpssDataDoc

46

Chapter 3

Dim objSpssInfo As ISpssInfo
Dim strAppPath As String
Dim strFileName As String
Dim intCountFileInfo As Integer

'Declare variants for GetVariableInfo method.
Dim numVarsDataDoc As Long
Dim vrtVarNames As Variant
Dim vrtVarLabels As Variant
Dim vrtVarTypes As Variant
Dim vrtVarMsmtLevels As Variant
Dim vrtLabelCounts As Variant

'Create the SPSS application
Set objSpssApp = CreateObject("SPSS.Application")

'Open a data file and make it visible so you can manually check the number of variables.
strAppPath = objSpssApp.GetSPSSPath
strFileName = strAppPath & "employee data.sav"
Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)
objDataDoc.Visible = True

'There are two ways to get the number of variables:
' from the File Information object and from the
' GetVariableInfo method on the Data Document object.
' The Data Document object may perform faster.

'Get the File Information object and read the number of variables.
Set objSpssInfo = objSpssApp.SpssInfo
intCountFileInfo = objSpssInfo.NumVariables

'Display the number of variables from ISpssInfo in a message box.
Dim strMsgInfo As String
Dim intResponseInfo As Integer
Dim strTitleInfo As String
strMsgInfo = "The number of variables from ISpssInfo:" & intCountFileInfo
strTitleInfo = "SPSS OLE Automation"
intResponseInfo = MsgBox(strMsgInfo, vbOKOnly, strTitleInfo)

'Get the Data Document object and use GetVariableInfo to read the number of variables.
numVarsDataDoc = objDataDoc.GetVariableInfo(vrtVarNames, vrtVarLabels, vrtVarTypes,
vrtMsmtLevels, vrtLabelCounts)

'Display the number of variables from ISpssDataDoc in a message box.
Dim strMsgData As String

47

OLE Automation Quickstart

Dim intResponseData As Integer
Dim strTitleData As String
strMsgData = "The number of variables from ISpssDataDoc:" & numVarsDataDoc
strTitleData = "SPSS OLE Automation"
intResponseData = MsgBox(strMsgData, vbOKOnly, strTitleData)

End Sub

Figure 3-10
Example application displaying number of variables

Data Document Object (ISpssDataDoc)

The Data Document object is the SPSS Data Editor, with or without a working data
file. You need a working data file before you can run any statistical analysis. Use the
OpenDataDoc or NewDataDoc method on the SPSS Application object to create a Data
Document:

Dim objDataDoc as ISpssDataDoc
Set objDataDoc = objSpssApp.OpenDatadoc ("c:\employee data.sav")

48

Chapter 3

You can also copy, paste, save, and print data, and get attributes of the working data
file, including the number of cases and variables, weighting and filter variables,
window size and state, and whether or not toolbars and value labels are displayed.

You can use the Data Document object only to get attributes of data. If you want to
set data attributes—for example, to specify a weighting variable rather than getting the
current setting—use SPSS command syntax.

You do not need to close a Data Document. When you open a new data file or quit
SPSS, the working data file is closed.

Figure 3-11 shows an example that starts SPSS, opens a working data file, and
opens a dialog box for statistical analysis. Figure 3-12 shows the Data Editor and the
dialog box.

Figure 3-11
Open Frequencies dialog box with Data Document object

'Example 6: Open the Frequencies dialog box.
Private Sub cmdExample6_Click()

'Declare variables.
Dim objSpssApp As ISpssApp
Dim objDataDoc As ISpssDataDoc
Dim strAppPath As String
Dim strFileName As String

'Create the SPSS application.
Set objSpssApp = CreateObject("SPSS.Application")

'Open a data file.
strAppPath = objSpssApp.GetSPSSPath
strFileName = strAppPath & "employee data.sav"
Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)

'Open the Frequencies dialog box.
Dim strPath As String
strPath = "statistics>summarize>frequencies"
objDataDoc.InvokeDialogAndExecuteSyntax strPath, SpssWindowParent, True

'At this point the end user of your application would request an analysis.

End Sub

Note: InvokeDialogAndExecuteSyntax can be used by other SPSS document objects as
long as there is a working data file. TheInvokeDialogAndExecuteSyntax topic in the

49

OLE Automation Quickstart

online Help for SPSS OLE Automation lists all of the valid menu paths. “Object
Browser and Online Help” on p. 69 describes how to access the online Help.

Figure 3-12
SPSS Data Editor and Frequencies dialog box

Syntax Document Object (ISpssSyntaxDoc)

The Syntax Document object is an open syntax window for pasting, running, and
saving SPSS command syntax files. For more information about SPSS command
syntax, see Chapter 2.

Use theNewSyntaxDoc or OpenSyntaxDoc method on the SPSS Application object
to open a syntax document:

Dim objSyntaxDoc as ISpssSyntaxDoc
Set objSyntaxDoc = objSpssApp.OpenSyntaxDoc ("c:\weekly.sps")

50

Chapter 3

Use theGetDesignatedSyntaxDoc method on the Application object or the
GetSyntaxDoc method on the Documents object to get a specific open syntax
document. To close a syntax document, use theClose method on the Syntax Document
object.

Figure 3-13 shows an example that starts SPSS and opens and runs a syntax file.
Figure 3-14 shows the syntax window.

Figure 3-13
Run SPSS command syntax file

'Example 7: Run an SPSS command syntax file.
Private Sub cmdExample7_Click()

'Declare variables.
Dim objSpssApp As ISpssApp
Dim objSyntaxDoc As ISpssSyntaxDoc
Dim objOutputDoc As ISpssOutputDoc
Dim strAppPath As String
Dim strFileName As String

'Create the SPSS application.
Set objSpssApp = CreateObject("SPSS.Application")

'Open an SPSS syntax file and make it visible.
' This example uses an example syntax file that was installed with SPSS.
strAppPath = objSpssApp.GetSPSSPath
strFileName = strAppPath & "Descriptive Statistics.sps"
Set objSyntaxDoc = objSpssApp.OpenSyntaxDoc(strFileName)
objSyntaxDoc.Visible = True

'Run the syntax in the file.
objSyntaxDoc.Run

'Normally you would close the syntax file with the following command.
‘ We left it open so you can see it.
objSyntaxDoc.Close

'Note: This syntax file was designed for the SPSS Production Facility, so
' it doesn't do anything in SPSS. It was used for this example
' because it is shipped with the SPSS product.

End Sub

51

OLE Automation Quickstart

Figure 3-14
Syntax window

Output Document Object (ISpssOutputDoc)

The Output Document object is an open Viewer document. This object contains the
Output Items Collection and a Print Options object. Use the Output Items Collection
object to manipulate output items at the outline level. You can cut, remove, promote,
or demote selected output items. You can select all output items of a particular type,
such as charts or notes tables, and export all or selected charts in any of a number of
graphics formats (to access individual output items, you have to first access the Output
Items Collection, described in the next section).

Use theNewOutputDoc or OpenOutputDoc method on the SPSS Application object
to open an output document:

Dim objOutputDoc as ISpssOutputDoc
Set objOutputDoc = objSpssApp.OpenOutputDoc(“c:\myoutput.spo”)

52

Chapter 3

Use theGetDesignatedOutputDoc method on the SPSS Application object or the
GetOutputDoc method on the Documents object to get an output document that is
already open:

Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc

To close an output document, use theClose method on the Output Document object.
Figure 3-15 shows a Visual Basic example that starts SPSS, opens a data file,

creates output items, and selects and removes all items that are notes.

Figure 3-15
Select and remove items from output

'Example 12: Select items in the Viewer window.
' This example selects and removes notes.
Private Sub cmdExample12_Click()

'Declare variables.
Dim objSpssApp As ISpssApp
Dim objDataDoc As ISpssDataDoc
Dim objOutputDoc As ISpssOutputDoc

'Create SPSS Application.
Set objSpssApp = CreateObject("SPSS.Application")

'Open a data file and create some output.
strAppPath = objSpssApp.GetSPSSPath
strFileName = strAppPath & "employee data.sav"
Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)
strCommand = strCommand + "DESCRIPTIVES"
strCommand = strCommand + " VARIABLES=salary salbegin"
strCommand = strCommand + " /STATISTICS=MEAN STDDEV MIN MAX ."
objSpssApp.ExecuteCommands strCommand, True

'Get the Viewer window and make it visible.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

'Select all notes in the output document and remove them.
objOutputDoc.ClearSelection
objOutputDoc.SelectAllNotes
objOutputDoc.Remove

End Sub

53

OLE Automation Quickstart

Figure 3-16
Outline with items selected prior to removal

Output Items Collection (ISpssItems)

The Output Items Collection contains the items in an open output document. This
object has a single property,Count, and single method,GetItem, that you use to get at
the individual output items beneath it. For example, Figure 3-19 on p. 57 shows how
to loop through the Items Collection and get the first pivot table of a given type.

54

Chapter 3

To get the Output Items object, declare an object variable asISpssItems and set it to
the Items property of the Output Document object:

Dim objOutputItems As ISpssItems
Set objOutputItems = objOutputDoc.Items()

Note that the collection is zero-based index, so the first item is item zero, the second is
item one, and so on. (Item zero is the root item labeledSPSS Outputthat appears even
in an empty output document and cannot be deleted.)

Figure 3-17 shows an example that starts SPSS, opens a data file, creates output
items, and gets an arbitrary item. Figure 3-18 shows the result of running the
example—the arbitrary item is selected in the Viewer.

Figure 3-17
Get output item from Output Items Collection

'Example 2: Get an output item from the output items collection.
Private Sub cmdExample2_Click()

'Declare variables.
Dim objSpssApp As ISpssApp
Dim strAppPath, strFileName As String
Dim objDaaDoc As ISpssDataDoc
Dim objOutputDoc As ISpssOutputDoc
Dim objOutputItems As ISpssItems
Dim objOutputItem As ISpssItem

'Create SPSS Application.
Set objSpssApp = CreateObject("SPSS.Application")
'Open a data file and create some output.
strAppPath = objSpssApp.GetSPSSPath
strFileName = strAppPath & "employee data.sav"
Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)
strCommand = strCommand + "DESCRIPTIVES"
strCommand = strCommand + " VARIABLES=salary salbegin"
strCommand = strCommand + " /STATISTICS=MEAN STDDEV MIN MAX ."
objSpssApp.ExecuteCommands strCommand, True

'Get the Viewer window and make it visible.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

55

OLE Automation Quickstart

'Get the Output Items collection.
Set objOutputItems = objOutputDoc.Items()

'Get the third output item.
'(Items are numbered starting at 0, thus item 2 is the third item)
Set objOutputItem = objOutputItems.GetItem(2)

'Select the item we just got.
objOutputItem.Selected = True

End Sub

Figure 3-18
Viewer displays selected output item

Output Item Object (ISpssItem)

The Output Item object is any item contained in an open Viewer window, including
pivot tables, charts, and text output. Use this object to select, remove, activate, and
modify output items.

To get an arbitrary output item, first get the Output Items Collection and then use
theGetItem method. For example, as shown in Figure 3-17, to get the third item in the
(zero-based) collection:

56

Chapter 3

Dim objOutputItem As ISpssItem
Set objOutputItem = objOutputItems.GetItem(2)

More often you’ll want to loop through the Items Collection to get items that meet
specified criteria. For example, use theSpssType property on the Output Item object to
get the item type and then test if the item is of the desired type:

Dim objOutputItem As ISspssItem
Dim intItemType As Integer
intItemType = objOutputItem.SPSSType
If intItemType = SPSSINote Then

The examples shown in Figure 3-19, Figure 3-21, Figure 3-23, and Figure 3-25 all use
this technique to access different types of items.

Pivot Table Object (PivotTable)

The Pivot Table object is an activated pivot table. You can use automation to do most of
the things you can do in the Pivot Table Editor. There are two ways you can use this
object:

� Select groups of cells (results or labels) or other elements (such as footnotes) and
apply properties and methods that modify the entire selection. For example, you
can use theForegroundColor property to change the foreground color for selected
cells.

� Get an individual element and modify it using properties and methods that apply to
the sub-objects contained in the pivot table. For example, with the Data Cells
object, you can use theForegroundColorAt property to set the foreground color for
the current data cell. A number of sub-objects are contained within the Pivot Table
object, including Footnotes, Data Cells, Row and Column Labels, Layer Labels,
and the Pivot Manager.

To get a Pivot Table object, loop through the Items Collection as shown in Figure 3-19.
The SPSS Base system also includes a number of sample scripts that demonstrate
techniques for manipulating pivot tables. For a brief introduction to scripting, see
“Working with the SPSS Scripting Facility” on p. 22 in Chapter 2. For more
information about scripting, see Chapter 4 in this document, the “Scripting Facility”
chapter in theSPSS Base User’s Guide,and the online Help.

Figure 3-19 shows an example that starts SPSS, opens a data file, creates output
items, and gets a pivot table. Figure 3-20 shows the result of running the example—the
pivot table is activated in the Viewer.

57

OLE Automation Quickstart

Figure 3-19
Get and activate pivot table object

'Example 8: Get a pivot table object.
Private Sub cmdExample8_Click()

'Declare variables.
Dim objOutputDoc As ISpssOutputDoc
Dim objOutputItems As ISpssItems
Dim objOutputItem As ISpssItem
Dim objPivotTable As PivotTable
Dim strAppPath As String
Dim strFileName As String
Dim strCommand As String

'Start SPSS.
Set objSpssApp = CreateObject("SPSS.Application")

'Open a data file and create some output so we can get a pivot table.
strAppPath = objSpssApp.GetSPSSPath
strFileName = strAppPath & "employee data.sav"
Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)
strCommand = strCommand + "REGRESSION"
strCommand = strCommand + " /MISSING LISTWISE"
strCommand = strCommand + " /STATISTICS COEFF OUTS R ANOVA"
strCommand = strCommand + " /CRITERIA=PIN(.05) POUT(.10)"
strCommand = strCommand + " /NOORIGIN"
strCommand = strCommand + " /DEPENDENT salary"
strCommand = strCommand + " /METHOD=ENTER salbegin ."
objSpssApp.ExecuteCommands strCommand, True

'Get the Viewer window and make it visible.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

'Get Output Items collection
Set objOutputItems = objOutputDoc.Items()
Dim intItemCount As Integer 'Number of output items.
Dim intItemType As Integer 'Output item type.
Dim strLabel As String'Output item label.

58

Chapter 3

'Loop through the output items, checking type and label.
' We'll look for ANOVA pivot tables.
' If type and label match, activate the item.
intItemCount = objOutputItems.Count() 'Get the number of items.
For Index = 0 To intItemCount - 1

Set objOutputItem = objOutputItems.GetItem(Index)
intItemType = objOutputItem.SPSSType() 'Get the item type.
strLabel = objOutputItem.Label 'Get the item label.
If intItemType = SPSSPivot And strLabel = "ANOVA" Then

Set objPivotTable = objOutputItem.Activate()
Exit For

End If
Next Index

End Sub

Figure 3-20
Viewer displays activated pivot table

59

OLE Automation Quickstart

Chart Object (ISpssChart)

The Chart object is a chart contained in the Output Document object. Use this object to
export a single chart. To export a number of charts in the same format, use the
ExportChart or ExportDocument method of the Output Document object.

To get a Chart object, declare an object variable asISpssChart and set it to the
ActivateChart method of the Output Item object. You need to deactivate the item when
you have finished manipulating the Chart object.

Figure 3-21 shows an example that starts SPSS, opens a data file, and creates and
exports a chart.

Figure 3-21
Export chart

'Example 9: Export a chart
Private Sub cmdExample9_Click()

'Declare variables.
Dim objOutputDoc As ISpssOutputDoc
Dim objOutputItems As ISpssItems
Dim objOutputItem As ISpssItem
Dim objSPSSChart As ISpssChart
Dim strCommand As String

'Start SPSS.
Set objSpssApp = CreateObject("SPSS.Application")

'Open a data file and create some output so we can export it.
strAppPath = objSpssApp.GetSPSSPath
strFileName = strAppPath & "employee data.sav"
Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)
strCommand = strCommand + "GRAPH"
strCommand = strCommand + " /BAR(SIMPLE)=COUNT BY gender"
strCommand = strCommand + " /MISSING=REPORT."
objSpssApp.ExecuteCommands strCommand, True

'Get the Viewer window and make it visible.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

60

Chapter 3

'Get Output Items collection
Set objOutputItems = objOutputDoc.Items()
Dim intItemCount As Integer 'Number of output items.
Dim intItemType As Integer 'Output item type.

'Loop through the output items, checking type.
' We'll look for charts.
' If type matches, activate the item and export it as a JPEG file.
intItemCount = objOutputItems.Count()

For Index = 0 To intItemCount - 1
Set objOutputItem = objOutputItems.GetItem(Index)
intItemType = objOutputItem.SPSSType()

If intItemType = SPSSChart Then
Set objSPSSChart = objOutputItem.ActivateChart
objSPSSChart.ExportChart "c:\temp\mychart.jpg", "JPEG File"

Exit For
End If
Next Index

'Tip: Check c:\temp for the file "mychart.jpg" to confirm the example worked.
' If you want to look at the file and have an application that is associated with jpg files,
' double-click it (e.g., Internet Explorer).

End Sub

Note: It is not possible to modify charts using OLE Automation. To control the
appearance of charts produced by automation, specify a chart template when creating
the chart. For more information about chart templates, see theSPSS Base User’s Guide
and the online Help.

61

OLE Automation Quickstart

Figure 3-22
Microsoft Internet Explorer displays exported chart

Graph Object (ISpssIGraph)

The Graph object (ISpssIGraph) is an interactive graph contained in the Output Item
object (ISpssItem). Use this object to retrieve and modify other objects associated with
the graph and to export an interactive graph.

To get a Graph object, declare an object variable asISpssIGraph and set it to the
GetIGraphOleObject method of the Output Item object.

62

Chapter 3

Figure 3-23 shows an example that starts SPSS, opens a data file, creates an
interactive graph, activates it, and turns on the value label display. Figure 3-24 shows
the result of running the example—the interactive graph is activated and displays value
labels.

Figure 3-23
Edit interactive graph

'Example 11: Modify an interactive graph
Private Sub cmdExample11_Click()

'Declare variables.
Dim objSpssApp As ISpssApp
Dim objDataDoc As ISpssDataDoc
Dim objOutputDoc As ISpssOutputDoc
Dim objOutputItems As ISpssItems
Dim objOutputItem As ISpssItem
Dim objSpssIGraph As ISpssIGraph
Dim objBarElement As ISpssIGraphBarElement
Dim strCommand As String

'Start SPSS.
Set objSpssApp = CreateObject("SPSS.Application")

'Open a data file and create some output so we can get an interactive graph object.
strAppPath = objSpssApp.GetSPSSPath
strFileName = strAppPath & "employee data.sav"
Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)
strCommand = strCommand + "IGRAPH"
strCommand = strCommand + " /VIEWNAME='Bar Chart'"
strCommand = strCommand + " /X1 = VAR(jobcat) TYPE = CATEGORICAL /Y = $count"
strCommand = strCommand + " /COORDINATE = VERTICAL"
strCommand = strCommand + " /X1LENGTH=3.0 /YLENGTH=3.0 /X2LENGTH=3.0
/CHARTLOOK='NONE'"
strCommand = strCommand + " /CATORDER VAR(jobcat) (ASCENDING VALUES
OMITEMPTY)"
strCommand = strCommand + " /BAR KEY=ON SHAPE = RECTANGLE BASELINE =
AUTO."
objSpssApp.ExecuteCommands strCommand, True

'Get the Viewer window and make it visible so we can see the graph after we change it.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

63

OLE Automation Quickstart

'Get Output Items collection
Set objOutputItems = objOutputDoc.Items()
Dim intItemCount As Integer 'Number of output items.
Dim intItemType As Integer 'Output item type.
'Dim strTitle As String 'The title text we want to find and change.

'Loop through the output items, checking type.
' We'll look for interactive graphs.
' If type matches, activate the item, turn on count labels and deactivate it.
intItemCount = objOutputItems.Count
For Index = 0 To intItemCount - 1

Set objOutputItem = objOutputItems.GetItem(Index)
intItemType = objOutputItem.SPSSType
If intItemType = SPSSIGraph Then

Set objSpssIGraph = objOutputItem.Activate()
Set objBarElement = objSpssIGraph.GetElement(SpssIGraphBar)
objBarElement.GetCountLabel.Show = True
objSpssIGraph.Redraw 'Always redraw to see your change.
objOutputItem.Deactivate
Exit For

End If
Next

End Sub

64

Chapter 3

Figure 3-24
Viewer displays edited interactive graph

Text Object (ISpssRTF)

The Text object is an RTF text editor contained in the Output Document object. You can
access and manipulate SPSS text output, including warnings, logs, and titles, using this
object.

To get a Text object, declare an object variable asISpssRtf and set it to the return
value of theActivateText method of the Output Item object. You need to deactivate the
item when you are finished manipulating the text object.

Figure 3-25 shows an example that starts SPSS, opens a data file, creates output
items, gets a text object, and changes the text. Figure 3-26 shows the modified text in
the Viewer.

65

OLE Automation Quickstart

Figure 3-25
Edit Text object

'Example 10: Modify a text object.
Private Sub cmdExample10_Click()

'Declare variables.
Dim objSpssApp As ISpssApp
Dim objDataDoc As ISpssDataDoc
Dim objOutputDoc As ISpssOutputDoc
Dim objOutputItems As ISpssItems
Dim objOutputItem As ISpssItem
Dim objSpssText As ISpssrtf
Dim strCommand As String

'Start SPSS.
Set objSpssApp = CreateObject("SPSS.Application")

'Open a data file and create some output so we can get a text object.
strAppPath = objSpssApp.GetSPSSPath
strFileName = strAppPath & "employee data.sav"
Set objDataDoc = objSpssApp.OpenDataDoc(strFileName)
strCommand = strCommand + "CROSSTABS"
strCommand = strCommand + " /TABLES=gender BY jobcat"
strCommand = strCommand + " /FORMAT= AVALUE TABLES"
strCommand = strCommand + " /CELLS= COUNT ."
objSpssApp.ExecuteCommands strCommand, True

'Get the Viewer window and make it visible so we can see the title after we change it.
Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc
objOutputDoc.Visible = True

'Get Output Items collection
Set objOutputItems = objOutputDoc.Items()

Dim intItemCount As Integer 'Number of output items.
Dim intItemType As Integer ‘Output item type.
Dim strItemTitle As String 'The title text we want to find and change.

'Loop through the output items, checking type and text.
' We'll look for titles with the text "Crosstabs" (titles are text objects).
' If type and text match, activate the item, change the text and deactivate it.
intItemCount = objOutputItems.Count
For Index = 0 To intItemCount - 1

Set objOutputItem = objOutputItems.GetItem(Index)

66

Chapter 3

intItemType = objOutputItem.SPSSType
If intItemType = SPSSTitle Then

Set objSpssText = objOutputItem.ActivateText
strItemTitle = objSpssText.Text
If strItemTitle = "Crosstabs" Then

objSpssText.Text = "My new title for crosstabs"
objOutputItem.Deactivate
Exit For

End If
End If

Next

End Sub

Figure 3-26
Viewer displays the edited title text

Properties and Methods

Most SPSS objects have properties that you can use to query the attributes of an object
and methods to manipulate the object. Table 3-2 on p. 68 provides an overview of
available SPSS methods and properties for high-level SPSS objects.

67

OLE Automation Quickstart

Properties. Properties set or return attributes of objects. Some properties return another
object, as discussed above; other properties are attributes, such as color or width. For
example, objects of the Pivot Table class have a property calledCaptionText. To set the
caption at the bottom of a pivot table (objPivotTable) to My Results, type the following
statement:

objPivotTable.CaptionText = "My Results"

When a property appears on the left side of an equals sign (as in the above example),
you aresetting its value. When a property appears on the right side, you aregetting,
or reading, its value. For example, to get the caption of the pivot table and save it in a
variable:

strFontName = objPivotTable.CaptionText

Methods. Methods perform actions on objects, such as selecting all of the elements in
a table:

objPivotTable.SelectTable

or removing a selection:

objPivotTable.ClearSelection

Like properties, some methods return another object. For example, the
GetDesignatedOutputDoc method returns the designated output document:

Set objOutputDoc = objSpssApp.GetDesignatedOutputDoc

68

Chapter 3

Table 3-2
Example properties and methods for high-level OLE Automation objects

Object Properties Methods

ISpssApp
Documents
Options
SpssInfo

ExecuteCommands
GetDesignatedOutputDoc
NewDataDoc
OpenDataDoc
Quit

ISpssOptions
DisplayCommands
OutputBeep
WarningsVisible

none

ISpssInfo NumVariables
VarType GetSelectedVariables

ISpssDocuments DataDocCount GetDataDoc

ISpssDataDoc
Modified
PromptToSave
Visible

Copy
GetNumberOfCases
GetVariables
SelectCells
SaveAs

ISpssSyntaxDoc
Designated
PromptToSave
Text

Close
PrintDoc
Run
SaveAs

ISpssOutputDoc
PrintOptions
SplitterPosition
Visible

ClearSelection
ExportCharts
InsertTitle
SelectAllMaps

ISpssDraftDoc
Height
Width
WindowState

Close
GetDocumentPath
PrintRange

ISpssItems Count GetItem

PivotTable
BackgroundColor
TableLook
TextStyle

CreateChart
HideFootnotes
SelectCaption
ShowAll

ISpssIGraph
CoordinateSystem
Elements
Title

DeleteTitle
GetElement
Redraw

ISpssRtf none RtfText

ISpssChart none ExportChart

Map none none

69

OLE Automation Quickstart

Note: Table 3-2 doesn’t list all of the available properties and methods. The online Help
for SPSS OLE Automation documents all properties and methods of SPSS objects.
“Object Browser and Online Help” below describes how to access the online Help.

SPSS Type Libraries

The complete set of object classes (or object types) and the properties and methods
associated with each are described in the SPSS type libraries. Atype library is a file
that contains OLE Automation standard descriptions of exposed objects, along with the
properties and methods associated with each.

SPSS provides four type libraries:

SPSS type library (spsswin.tlb). Includes the Application object, Options object, File
Information object, the complete Documents Collection, the Items Collection, the
Chart object, and Maps.

PivotTable type library (spsspvt.tlb). Includes the Pivot Table object and all of the
objects that reside within it.

Graphics Editor OLE control (spssgctl.tlb). Includes the Interactive Graphs object and all
of the objects that reside within it.

RTF type library (spssrtf.tlb). Includes the RTF text object.

SPSS type libraries are automatically registered in the Windows registration database
the first time you run SPSS after you have properly installed it.

Some programming environments, such as Visual Basic, require you to explicitly
add the type libraries to the development environment before you can access them. If
you must do so, make sure that you add all four type libraries. See your programming
language’s documentation for specific instructions.

Object Browser and Online Help

Most development environments, including Visual Basic, C++, and the SPSS Script
Editor, provide an object browser facility that allows you to view and use the type
libraries. You can browse all SPSS objects, their properties and methods, and the
predefined constants. You can also paste the syntax of selected properties and methods

70

Chapter 3

directly into your code, and you can access context-sensitive online Help and code
examples.

Figure 3-27
SPSS Script Editor object browser

To view objects and get Help in most object browsers:

E Select the type library that contains the objects of interest.

E Select an object class to display the methods and properties for that class.

E Select individual properties and methods to paste them into your code, or pressF1 to
access context-sensitive Help.

To access OLE Automation object tree Help from the SPSS product:

E Launch SPSS. From the Windows Start menu choose:

Programs
SPSS for Windows

SPSS for Windows

71

OLE Automation Quickstart

E Access a script window. For example, from the menus choose:

File
New

Script

E Open the Help. From the script window menus choose:

Help
Objects

E Click the object of interest on the tree to access Help, example code, and a complete
list of that object’s properties and methods.

72

Chap te r

4
Scripting Quickstart

This chapter introduces you to using the SPSS scripting facility. The chapter begins
with an overview of scripting features and concludes with step-by-step examples. If
you are already familiar with SPSS for Windows and SPSS OLE Automation, this is
a good place to start learning about writing a script. If you’re unfamiliar with SPSS
for Windows, read Chapter 2 first. If you’re unfamiliar with SPSS OLE Automation,
read Chapter 3 first.

What Is the SPSS Scripting Facility?

Scripts work by manipulating SPSS OLE Automation objects by using their
properties and methods. Scripts are created and edited in the SPSS script window. The
SPSS scripting facility is introduced on p. 22 in Chapter 2.

Scripting versus OLE Automation Applications

Scripting uses the same SPSS OLE Automation object, properties, and methods that
are described in Chapter 3. To write scripts, you first need to familiarize yourself with
the object model hierarchy shown in Figure 3-1.

The main distinction between writing a script and writing an OLE Automation
application is that the script runs within the SPSS application—it isn’t a separate
application. The code that you write for a script can be essentially the same as the code
you write for an OLE Automation application except that when you write a script, you
do not need to declare the SPSS Application object (because SPSS is already
running).

73

Script ing Quickstart

Write scripts when you want to control SPSS from within an SPSS session—for
example, when you want to:

� Customize SPSS output.

� Add a feature to SPSS.

Write OLE Automation applications when you want to control SPSS from another
application—for example, when you want to:

� Add SPSS functionality to another application.

� Write an application with a completely alternate user interface to SPSS.

Script Window Features

The script window is a fully featured programming environment that uses the Sax
Basic language and includes a dialog box editor, object browser, debugging features,
and context-sensitive Help. (Figure 2-10 in Chapter 2 shows the script window.)

Pasting syntax. Many SPSS analysis and data management dialog boxes include a Paste
button that generates command syntax for the current procedure. If you open a dialog
box from a script window, SPSS will paste the command syntax and the code required
to run it. See “Creating Command Syntax” on p. 16 in Chapter 2 for step-by-step
instructions.

Command syntax. TheSCRIPT syntax command can be used to pass a parameter from
a syntax file to a script. For example, you can pass a filename. See the online Help topic
ScriptParameter Method for details and an example (chooseHelp on the script window
menu, then chooseObject, and then look at the Index). “Writing an Original Script” on
p. 81 includes an example use of theSCRIPT command.

Customized descriptions. You can add a description to your script, which is displayed
in the Run Script and Use Starter Script dialog boxes. Add a comment on the first line
of the script that starts with‘Begin Description, followed by your comments (one or
more lines), followed by‘End Description.

Procedure display. As you move the cursor, the name of the current procedure is
displayed at the top of the window.

Color cues. Terms colored blue are reserved words in Sax Basic (for exampleSub, End

Sub, andDim). Objects, properties, and methods are displayed in magenta. Comments
are displayed in green.

74

Chapter 4

Dialog boxes. The SPSS scripting facility supports custom dialog boxes. Use these
when you want to solicit input from a user about how the script should run or when you
want to customize SPSS behavior and hide that fact from the user. The script window
has a UserDialog Editor that provides a way to define the dialog box. Access the dialog
editor from the Script menu.

Debugging. The Debug menu allows you to step through your code, executing one line
or subroutine at a time and viewing the result. You can also insert a break point in the
script to pause the execution at the line that contains the break point.

Object browser and Help. Press F2 to display the object browser, which displays SPSS
objects, properties, and methods and affords access to the online Help. The object
browser also allows you to paste the correct code for selected properties and methods
directly into your script.

Types of Scripts

SPSS includes many sample scripts that are installed with the product in the \Scripts
directory. In addition to ordinary sample scripts, which you can run to get the results
you want, scripts for special purposes include the following:

Starter. Starter scripts supply code for one or more common sequences of tasks. They
include comments with hints on how to customize the script to your particular needs.
Starter scripts are installed in the SPSS installation directory in\Scripts\Starter. SPSS
automatically prompts you to open a starter script when you create a new script
window (see “Modifying a Starter Script” on p. 76 for an example). Of course, you can
use any script as a starter script, although it probably won’t be as easy to customize.
Simply open the script, customize it, and save it with a different filename.

Global. A global procedures script is a library of procedures that can be called by other
scripts. When you open a script window, the global file is loaded automatically and its
procedures are available to your script. To view the global script, click the tab labeled
2. The tab is located on the left side of the script window. You can add your own
frequently used procedures to the default global file (\Scripts\global.sbs), or you can
specify a different global file in the Options dialog box (on the Edit menu).

Autoscript. An autoscript runs automatically when it is triggered by the creation of a
specific type of output from a specific procedure. For example, there is an autoscript
that runs whenever a Correlations table is produced by the Bivariate Correlations
procedure. The script automatically removes the upper diagonal of the table as soon as

75

Script ing Quickstart

it appears in the Viewer. You can add your own autoscripts to the default autoscript file
(\Scripts\Autoscript.sbs), or you can specify a different autoscript file in the Options
dialog box (on the Edit menu). For an example, see “Adding an Autoscript” on p. 78.

How Do I Use Scripting?

When using the SPSS Scripting Facility,you:

E Decide what you want your script to do.

E Write the script code.

E Run the script.

Deciding What You Want Your Script to Do

You can use scripting to do most of the things you can do with OLE Automation, and
that includes most of the things you do when running SPSS interactively. For examples
of tasks, see the list on p. 30 in Chapter 3.

Because scripts run within SPSS, one of your main decisions is what to do in the
graphical user interface versus what tasks to code into the script. Working in the user
interface allows maximum flexibility and user control—it is best for analytic tasks.
Scripting allows a sequence of actions to be repeated exactly—it is best for repetitive,
predictable tasks.

Look at the example scripts distributed with SPSS for Windows to get ideas about
what types of tasks can be scripted. Example scripts (*.sbs) are in the scripts folder in
the SPSS installation directory and in\SPSS Products and Services\SPSS Script
eXchange on the SPSS for Windows CD-ROM.

Writing Script Code

Start writing script code by modifying starter scripts (for an example, see “Modifying
a Starter Script” on p. 76).

Before writing your own scripts, use the graphical user interface to perform the
tasks you want to script. At each step, think about the OLE Automation objects,
methods, and properties that correspond to what you are doing. For more information
and an example, see p. 30 in Chapter 3.

76

Chapter 4

Running Scripts

Autoscripts run automatically. Other scripts are run from the Utilities menu (see
Figure 4-3).

Examples

Modifying a Starter Script

The following steps show an example of how to work with a starter script. For this
example, we want to delete all Notes tables from an SPSS output file. We could
manually select and delete each unwanted table, or we could use a script.

Figure 4-1
Choosing a starter script

E Launch SPSS. From the Windows Start menu choose:

Programs
SPSS for Windows

SPSS for Windows

77

Script ing Quickstart

E Create a script window. From the SPSS menus choose:

File
New

Script

E Choose a starter script. For example, selectDelete Navigator Items.sbs, which has a
promising description, since we want to delete all Notes tables from the output (see
Figure 4-1).

E Review the script. Read the comments and look at the code. Decide if the script
supports what you want to do and, if it does, how you want to modify it to suit your
needs.

E Modify the script. For example, make the necessary changes to delete all Notes tables.
For each line listed below, remove the comment character (') from the beginning of the
line. Removing the comment character causes the line of code to be executed when the
script is run.

A copy of the modified script is on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\SPSS Script\Modify starter script.sbs.

E Save the script. From the menus choose:

File
Save As...

Type a name and browse to a location. For example, save the script as
C:\SPSS\Scripts\Delete all notes.sbs.

E Open an output file. This script will work on any valid SPSS output file (.spo) that
contains Notes tables. From the SPSS menus choose:

File
Open

Output...

Line of Code Effect

intTypeToDelete = SPSSNote Causes Note table items to be deleted when the
DeleteByAll procedure is called.

Call DeleteAllByType(intType-
ToDelete)

Calls a procedure to delete all Notes tablesand
passes it the type of item to delete.

Call DeleteSelectedItems Calls a procedure to delete selected items.

78

Chapter 4

Navigate to the location of the output file and select it. A sample output file with two
Notes tables is included on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\SPSS Script\Modify starter script.spo.

E Run the script. From the SPSS menus choose:

Utilities
Run Script...

Navigate to the location where you saved the script and select it. For example, select
C:\SPSS\Scripts\Delete all notes.sbs. The script runs and removes all Notes tables. (If
you ran the script onModify starter script.spo, there were seven items before you ran
the script and five items afterwards—the two Notes tables were deleted).

Since this script can be run on any valid SPSS output file that contains notes, you now
have a quick and easy way to accomplish what would otherwise be a boring and
repetitive task.

Adding an Autoscript

The following steps show an example of how to add a new autoscript procedure to the
default autoscript file. For this example, we want to automatically make the font of the
row totals bold italic whenever SPSS produces a Means table.

Figure 4-2
Autoscript file with a newly created autoscript ready for your code

79

Script ing Quickstart

E Launch SPSS. From the Windows Start menu choose:

Programs
SPSS for Windows

SPSS for Windows

E Open a data file. For example, open the employee data file. From the SPSS menus
choose:

File
Open

Data...

Selectemployee data.sav.

E Run the procedure that creates the type of output item you want to customize. For
example, run the Means procedure. From the menus choose:

Analyze
Compare Means

Means...

Move Current Salary to the Dependent list andEmployment Category to the
Independent list.

E Select the output item you want to customize. In the Viewer, scroll to the table titled
Reportand right-click to open the shortcut menu.

E Create a new Autoscript. ChooseCreate/Edit Autoscript from the shortcut menu. This
automatically opensautoscript.sbs in a script window and inserts several lines of code:

Comment. At the beginning of the file:

' enabled Means_Table_Report_Create

Autoscript procedure for Means table creation. At the end of the file (see Figure 4-2):

Sub Means_Table_Report_Create(objTable As Object, objOutputDoc As Object,
lngIndex As Long)

'Autoscript
'Trigger Event: Report Table Creation after running Means procedure.

End Sub

E Add the necessary code to accomplish the customizing you want. Insert your code
between the'Trigger Event comment andEnd Sub. In this case, we make the row totals

80

Chapter 4

bold italic. We’ll use a procedure that is already in the autoscript file,
SelectRowLabelsAndData, to find and select the cells we want to change. The
completed code is:

Sub Means_Table_Report_Create(objTable As Object, objOutputDoc As Object,
lngIndex As Long)

'Autoscript
'Trigger Event: Report Table Creation after running Means procedure.

‘Your inserted code begins here.
'Declare a variable to keep track of what cells are selected.
Dim bolSelection As Boolean

‘Call a procedure, SelectRowLabelsAndData, that selects the row TOTAL.
'The objTable parameter is the Means table that has been created.
' It is passed to the procedure as objPivotTable.
'The cTOTAL paramter, defined above as the string 'Total'
' is passed to the procedure as strSearchString.

Call SelectRowLabelsAndData(objTable, cTOTAL, bolSelection)

'When the procedure returns a cell selection, turn it bold and italic.
If bolSelection = True Then

objTable.TextStyle = SpssTSBoldItalic
End If
‘Your insterted code ends here

End Sub

The procedureSelectRowLabelsAndData was already coded for us in the autoscript file.
What we did in this example was to apply that procedure to the type of table that we
wanted to customize—in this case, the Means table.

We found the available text styles forobjTable by using the script window’s object
browser. Follow the steps on p. 69 in Chapter 3 to open the object browser. Browse the
PivotTable data type and theTextStyle property. Click? for a list of available style
settings.

E Save your changes. From the menus choose:

File
Save

E Run the Autoscript. The script will run automatically each time you produce output with
the Means procedure. Open a data file and from the menus choose:

Analyze
Compare Means

Means...

81

Script ing Quickstart

E To deactivate the new Autoscript. From the menus choose:

Edit
Options...

Click theScripts tab, and then clickMeans_Table_Report_Create in the Autoscript
subroutine status listto deselect it.

Writing an Original Script

The following steps show an example of how to write an original script. For this
example, we want to open an output file (.spo), export the visible items as HTML
(charts as JPEG), and close the file.

Figure 4-3
Running a script

E Launch SPSS. From the Windows Start menu choose:

Programs
SPSS for Windows

SPSS for Windows

82

Chapter 4

E Perform the script scenario with the user interface. Think about the objects, methods,
and properties you are using. For this example, we’ll open an output file, export it, and
close the output file.

Open the output file. From the menus choose:

File
Open

Output...

Navigate to the location of the output file and select it. A sample output file is included
on the SPSS for Windows CD-ROM in\SPSS\Developer\Programs\SPSS
Script\Modify starter script.spo.

The OLE automation equivalent is to use theOpenOutputDoc method onobjSpssApp to
openISpssOutputDoc. ISpssOutputDoc.Designated=True was set when you opened the
file—documents are automatically designated when they are opened.

Export. In the Viewer, from the menus choose:

File
Export...

We want to export HTML for all visible objects, so selectOutput document from the
Export list, theAll Visible Objects radio button, andHTML file (*.htm) for the file type.
Click Options and select file typeJPEG *.JPG to export charts as JPEG.

The OLE Automation equivalent is to use theExport method onISpssOutputDoc.

Close the output file. In the Viewer, from the menus choose:

File
Close

The OLE automation equivalent is to use theClose method onISpssOutputDoc.

E Create a script window. From the SPSS menus choose:

File
New

Script

The window is created with the code:

Sub Main

End Sub

You will be inserting your code between those two lines.

83

Script ing Quickstart

E Write the code. From the user interface scenario in the step above, you already know
the basic steps, objects, methods, and properties. As you write the code, press F2 for
the object browser and for online Help on SPSS objects. See Appendix C for code-
writing conventions.

Declare variables and other housekeeping.

Sub Main
'Begin description.
'This example gets the specified output document,
' designates it, and exports all visible items to HTML.
' Charts are exported as JPEG files.
'End description.

'Declare variables.
Dim objOutputDoc As ISpssOutputDoc
Dim objSpssOptions As ISpssOptions
Dim strCurrentDir As String
Dim strOutputFileName As String
Dim strExportFileName As String

'Make sure charts are exported as JPEG.
Set objSPSSOptions = objSpssApp.Options
objSpssOptions.DefaultChartExportFormat = "JPEG File"

'Get the current directory to use as a default later.
strCurrentDir = objSpssApp.CurrentDirectory

Open the output file.

'Get the name of the output file to open. That's the file that you will export.
'You can get that from syntax via ScriptParameter.
strOutputFileName = objSpssApp.ScriptParameter(0)

'If the name wasn't passed with syntax, prompt the user.
If strOuptutFileName = "" Then
strOutputFileName = GetFilePath$(,"spo", strCurrentDir, "Select Output File to
Export", 0)
End If

'Now that we have the name of the file to Export, open and designate it.
Set objOutputDoc = objSpssApp.OpenOutputDoc (strOutputFileName)
objOutputDoc.Designated = True

84

Chapter 4

Export.

'Prompt the user for the name of the of the file to export to.
strExportFileName = GetFilePath$ ("Export.htm", "htm", , "Export File Name for "
+strOutputFileName, 3)

'Export it.
objOutputDoc.ExportDocument (SpssVisible, strExportFileName,
SpssFormatHtml, True)

Close the output file.

'Close it.
objOutputDoc.Close

End Sub

E Save the script. In the script window, from the menus choose:

File
Save

And type a name for the script—for example,Export output.sbs.

E Run the script. You can run this script from the user interface or from syntax.

To run the script interactively and prompt the user for the output file to export, from the
menus choose (see Figure 4-3):

Utilities
Run Script...

Navigate to the location of your script file and select it. For example, selectExport
output.sbs. You will be prompted for an output file to export and for the export
filename.

To run the script from syntax, use theSCRIPT command syntax and include the name
of the output file to export as a script parameter. For example, the syntax:

SCRIPT 'c:\myscripts\Export output.sbs' ("myoutput.spo").

will open and exportmyoutput.spo.

A copy of this script is included on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\SPSS Script\Export output.sbs.

85

Chap te r

5
Additional Examples

SPSS for Windows includes samples of code that illustrate various ways to use the
SPSS developer’s tools. This chapter provides a description of each sample program.
You may find the examples useful when you design applications, and you can take the
sample code and modify it to suit your needs. The code for all of the examples is
located on your SPSS for Windows CD-ROM in\SPSS\Developer.

Notes:

� The examples in this chapter come from a variety of sources and are written with
a variety of coding styles. They are intended only to illustrate the concepts
involved in writing applications with the SPSS developer’s tools; they do not
contain all of the error checking and exception handling typical of finished
applications.

� All Visual Basic examples were developed in version 4.0 and were resaved as
version 6.0 projects.

� All Visual Basic examples assume that SPSS is not currently running. If you want
to write an application that checks to see if SPSS is running, use the sample code
on p. 41 in Chapter 3 as your starting point.

For more examples. Additional examples that use the SPSS scripting facility are
available on the CD-ROM in\Spss Products and Services\SPSS Script eXchange
and on the SPSS Web site athttp://www.spss.com/software/spss/scriptexchange.
Sample scripts are installed with the SPSS system in the\Scripts folder. The sample
code for the Visual Basic application described in Chapter 3 is found in
\SPSS\Developer\Programs\OLE Quickstart\spssole.vbp.

86

Chapter 5

Edit All Pivot Tables
Figure 5-1
Run Script on Viewer

Description. This script finds each pivot table in an output document, activates it, and
modifies it. The distributed example applies the AutoFit method to all tables to
recalculate the cell size. The user can replace AutoFit with whatever pivot table editing
method(s) he or she chooses.

Development tools. TheSPSS scripting facility and OLE Automation.

Features. The program shows how scripting can be used to automate routine editing
tasks.

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\SPSS Script\Edit all pivot tables.sbs.

Requirements. SPSS must be running, and an output file with at least one pivot table
must be open.

87

Addit ional Examples

Running the application. To run the script from the Viewer:

E Click the output window you want to edit. It must contain at least one pivot table.

E From the menus choose:

Utilities
Run Script...

E Browse to the location ofEdit all pivot tables.sbs, and select it.

E Click Run.

Manage Multiple Instances of SPSS
Figure 5-2
Multiple instances of SPSS example

Description. This example opens a dialog box that prompts the user to a data file
location and the maximum number of files to open. After making these specifications,
the user clicksOpen. For each file in the location up to the maximum number, an
instance of SPSS starts and opens the file. TheClose button closes the files and exits
all instances of SPSS.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows a basic example of how to launch and handle multiple
instances of SPSS with OLE Automation. It exercises the Application (ISpssApp) and
ISpssDataDoc objects.

88

Chapter 5

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\Visual Basic\Load SPSS data files\LoadSPSS.vbp.

Requirements. This example requires SPSS for Windows. It will open the SPSS data
files (.sav) from any location.

Running the application. Run the .vbp file from within Visual Basic or execute
\SPSS\Developer\Programs\Visual Basic\Load SPSS data files\LoadSPSS.exe from
the SPSS for Windows CD-ROM.

Output Item Index
Figure 5-3
Output item index example

Description. This simple program starts SPSS, opens the output file that the user
chooses, lists the number of items in the file, and prints the index number and label for
each item. The program demonstrates the way that output items are indexed in the
Viewer.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows how output items are indexed. It also shows how to raise
a Windows common dialog box to open a specific type of SPSS file. It introduces the
Output Items Collection (ISpssItems) andISpssItem.

89

Addit ional Examples

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\Visual Basic\List index\lstindex.vbp.

Requirements. This example requires SPSS for Windows. It works on any SPSS output
file (.spo). A sample output file is included in the same directory as the example.

Running the application. You can run the .vbp file from within Visual Basic or execute
\SPSS\Developer\Programs\Visual Basic\List index\lstindex.exe from the SPSS for
Windows CD-ROM.

Manipulate Output Items
Figure 5-4
Viewer output item manipulation example

90

Chapter 5

Description. This program manipulates items in Viewer (for example, it shows and
hides items). The program acts either on the user’s selection of items or on all items of
a given type (for example, charts, pivot tables, and notes).

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program illustrates how to use OLE Automation to navigate through the
outline tree in the Viewer, locate a specific type of output item, and use methods on
output items. It exercises theISpssOutputDoc, ISpssItems, ISpssItem objects, and the
SPSSType property; it also exercises theDelete, Visible, Selected, Promote, Demote,
PageBreak, andHeight methods.

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\Visual Basic\Manipulate nodes in the
Viewer\navmanip.vbp.

Requirements. This example requires SPSS for Windows and an SPSS output file. A
sample output (.spo) file is included in the same directory as the example.

Running the application. You can run the .vbp file from within Visual Basic or execute
\SPSS\Developer\Programs\Visual Basic\Manipulate nodes in the
Viewer\navmanip.exe from the SPSS for Windows CD-ROM.

91

Addit ional Examples

Pivot Table Manipulation
Figure 5-5
Pivot table manipulation example

Description. This program starts SPSS, opens theEmployee data.sav file, and waits for
the user to choose one of the pivot table manipulation buttons. The program
demonstrates a number of techniques for manipulating pivot table output through
automation. Available manipulations include applying color to table cells that meet
specific criteria, printing table labels and cell values, and pivoting a table.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows a variety of ways to customize a pivot table to meet your
needs, including modifications based on the values of table cells. It also shows how to
open a data file and run a syntax file to produce output and how to open an existing
output file. It introduces objects in the pivot table type library, including

92

Chapter 5

ISpssPivotTable, ISpssDataCells, ISpssLabels, ISpssLayerLabels, ISpssPivotMgr, and
ISpssDimension. In addition, it usesISpssDataDoc, ISpssSyntaxDoc, ISpssItems,
ISpssOutputDoc, ISpssItems, andISpssItem.

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\Visual Basic\Pivot table exerciser\pvtxrsiz.vbp.

Requirements. This example requires SPSS for Windows, theEmployee data.sav data
file that is distributed with the SPSS Base system, and several SPSS syntax and output
files that are included in the same directory as the example.

Running the application. You can run the .vbp file from within Visual Basic or execute
\SPSS\Developer\Programs\Visual Basic\Pivot table exerciser\pvtxrsiz.exe from the
SPSS for Windows CD-ROM.

Correlation Matrix Diagonal
Figure 5-6
Correlation matrix diagonal example

Description. The correlation diagonal example opens a dialog box that prompts the user
to remove the upper diagonal of a correlation matrix. When the user clicksRemove

Upper Diagonal, the application starts SPSS, opens a data file, runs the SPSS
Correlations procedure, and removes the upper diagonal from the resulting correlations
table. A separate button restores the upper diagonal. TheExit button closes SPSS and
the example application.

Development tools. Visual Basic and SPSS OLE Automation.

93

Addit ional Examples

Features. The program shows a basic example of how SPSS output (in this case, a pivot
table object from a specific SPSS procedure) can be edited with OLE Automation. In
this example, specific cells in pivot table output are hidden. It exercises theISpssItems,
ISpssItem, ISpssPivotTable, andISpssDataCells objects. This kind of output
manipulation can also be done with the SPSS scripting facility (see subroutine
RemoveUpperDiag and functionGetVarGroupSize in autoscript.sbs, which is installed
with SPSS in the\Scripts folder).

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\Visual Basic\Correlations diagonal\corrdiag.vbp.

Requirements. This example requires SPSS for Windows and theEmployee data.sav
data file that is distributed with the SPSS Base system.

Running the application. You can run the .vbp file from within Visual Basic or execute
\SPSS\Developer\Programs\Visual Basic\Correlations diagonal\corrdiag.exe from the
SPSS for Windows CD-ROM.

Shorten Percentage Labels in Crosstabulation
Figure 5-7
Shorten percentage labels example

94

Chapter 5

Description. This program starts SPSS, opens theEmployee data.sav file, and runs a
syntax file,Percent.sps, that produces crosstabulation pivot tables. The user selects the
table from the resulting output and clicksRun to shorten its labels torow %, column %,
andtotal % where appropriate.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows another basic example of how the SPSS output from a
specific SPSS procedure can be edited with OLE Automation. In this example, specific
label text in the pivot table output is located and replaced. It also shows how to open a
data file and run a syntax file to produce output. It exercises theISpssItems, ISpssItem,
ISpssPivotTable, andISpssLabels objects and uses theRowLabelArray and
ColumnLabelArray methods, which returns a labels object. This kind of output
manipulation can also be done with the SPSS scripting facility (see subroutines
ChangeToPercent andSearchAndReplaceLabel in autoscript.sbs, which is installed with
SPSS in the\Scripts folder).

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\Visual Basic\Shorten percentage labels in
crosstablulation\percent.vbp.

Requirements. This example requires SPSS for Windows, theEmployee data.sav data
file that is distributed with the SPSS Base system, and an SPSS syntax file,
Percent.sps, which is included in the same directory as the example.

Running the application. You can run the .vbp file from within Visual Basic or execute
\SPSS\Developer\Programs\Visual Basic\Shorten percentage labels in crosstabulation
\percent.exe from the SPSS for Windows CD-ROM.

95

Addit ional Examples

Make Wide Pivot Tables Narrow
Figure 5-8
Make wide pivot tables narrow example

Description. This example starts SPSS, opens the output file that the user chooses, and
applies a number of algorithms to make wide pivot tables narrower. Only tables with
more than eight columns are processed. When the user clicksExit, the application
prompts the user to save his or her changes.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows ways to automatically format tables using SPSS OLE
Automation. It introduces the Options object (ISpssOptions) and exercises the
ISpssOutputDoc, ISpssItems, ISpssItem, PivotTable, ISpssFootnotes, ISpssDataCells, and
ISpssLabels objects.

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\Visual Basic\Make pivot tables narrow\narrow.vbp.

Requirements. This example requires SPSS for Windows. It works on any SPSS output
file (.spo). A sample output file with a wide table is included in the same directory as
the example.

Running the application. You can run the .vbp file from within Visual Basic or execute
\SPSS\Developer\Programs\Visual Basic\Make pivot tables narrow\narrow.exe from
the SPSS for Windows CD-ROM.

96

Chapter 5

Display, Print, and Export Reports
Figure 5-9
Payroll example

Description. This application populates a tree control with SPSS analyses based on
employee data exported from a Ceridian human resources database. The user can
generate tables and charts showing average salaries, vacation time, and sick time. The
reports can be broken down by job title, department, marital status, gender, and
ethnicity. User requests are translated into SPSS syntax and submitted to SPSS. The
SPSS results are displayed in the application. Tables and charts generated by this
application can be viewed on-screen, printed, and exported. Export formats include
HTML and JPEG, which are suitable for posting on a company intranet.

97

Addit ional Examples

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program demonstrates how to use a Visual Basic user interface to collect
user requests for analyses and to display the SPSS output. The application generates
the appropriate SPSS syntax from the user interface, sends it to SPSS for processing,
and receives the results from SPSS. It exercises theISpssApp, ISpssOptions,
ISpssDataDoc, ISpssOutputDoc, ISpssItems, andISpssItem. It also accesses pivot tables
with PivotTable, ISpssLabels, ISpssPivotMgr, andISpssDimension and accesses charts
with theExportChart method onISpssChart.

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\Payroll\payroll.vbp.

Requirements. This example requires SPSS for Windows, the data fileCeridian.sav,
and several SPSS files that are included in the same directory as the example. Before
you run the program, you must enable copying of objects as ActiveX controls from
SPSS by running the fileobjs-on.bat in your SPSS directory.

Running the application. You can run the .vbp file from within Visual Basic or execute
\SPSS\Developer\Programs\Payroll\payroll.exe from the SPSS for Windows CD-ROM.

98

Chapter 5

Display a Report in Microsoft Word
Figure 5-10
Marketing quarterly expense report example

Description. This application is written for the international office of a fictitious
company to perform a quarterly analysis of marketing expenditures. It combines the
analytic capability of SPSS with the presentation capability of Microsoft Word.

The program starts SPSS, opens themexpense.sav file, populates the dialog box
with values from the SPSS file, and starts Microsoft Word. The user selects the quarter
and international region of interest and clicksView to see the SPSS tables and charts in
a Microsoft Word document using a template (mexpense.dot).

Development tools. Visual Basic, Microsoft Word macro recorder (Visual Basic for
Applications), and SPSS OLE Automation.

Features. The program demonstrates communication between software applications. It
uses SPSS OLE Automation and a Microsoft Word macro to pass the results of an
SPSS analysis to a predefined Microsoft Word form.

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\Microsoft Word VBA\wdsample.vbp andwdsample.dot.

99

Addit ional Examples

Requirements. This example requires SPSS for Windows, Microsoft Word 97 or later,
themexpense.sav SPSS data file, and themexpense.dot Microsoft Word template that
are included in the same directory as the example.

Running the application. You can run the .vbp file from within Visual Basic or execute
\SPSS\Developer\Programs\Microsoft Word VBA\wdsample.exe from the SPSS for
Windows CD-ROM.

Analyze Excel Data and Display Reports in Excel
Figure 5-11
Microsoft Excel example

Description. This example uses SPSS to analyze data in a Microsoft Excel worksheet.
The program exports the columns in the current worksheet as variables for analyses in
SPSS and opens a dialog box that prompts the user to select a statistical procedure. The
SPSS dialog box for the requested procedure is displayed, allowing the user to select
variables for analysis. The results of the analysis are passed back to Excel and are
displayed on one or more worksheets. Optionally, the user can display the SPSS
application, transfer SPSS-created data (for example, regression residuals) to Excel,
control which SPSS output objects to display, and specify the format for exported
SPSS pivot tables.

Development tools. Microsoft Excel macro (Visual Basic for Applications) and SPSS
OLE Automation.

Features. The program demonstrates communication and data transfer between
software applications. It uses Excel and SPSS OLE Automation to pass data from an

100

Chapter 5

Excel spreadsheet to SPSS for analysis. The SPSS output is passed back to Excel for
display and further analysis. The program shows how to open SPSS dialog boxes from
another application. It exercises theISpssDocuments, ISpssDataDoc, ISpssOutputDoc,
ISpssOutputItems, andISpssOutputItem objects. In addition, it uses the
InvokeDialogAndReturnSyntax with menu paths,ExecuteCommands, Copy, and
ExportChart methods.

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\Microsoft Excel VBA\dkexcel.xls.

Requirements. This example requires SPSS for Windows and Excel 97 or later. It works
on any Excel worksheet with appropriate numeric data. A sample worksheet,
Employee data.xls, is included in the same directory as the example.

Running the application. You can run the Excel macro (dkexcel.xls) from an Excel
worksheet. An easy way to run the macro is to associate it with a toolbar icon. You can
also run it from the Visual Basic editor.

To run from a toolbar:

E Open the macrodkexcel.xls in Excel.

E From the menus choose:

Tools
Customize...

E If the toolbar where you want to add the icon is not visible, click theToolbars tab and
then click the check box next to the toolbar name.

E Click theCommands tab.

E SelectMacros from the Categories list.

E Drag a custom button icon from the Customized dialog box onto the toolbar (leave the
Customize dialog box open).

E Right-click the toolbar button, and selectAssign Macro from the shortcut menu.

E SelectMain from the list of macros.

E Close the Customize dialog box.

E Open a worksheet that contains that data you want to analyze in SPSS (any Excel
worksheet with appropriate numeric data will work).

101

Addit ional Examples

To run in the Visual Basic editor:

E Open the macrodkexcel.xls in Excel.

E From the menus choose:

Tools
Macro

Macros...

E SelectMain from the list of macros.

E Click Edit.

Production Facility Code
Figure 5-12
SPSS Production Facility

102

Chapter 5

Description. The SPSS Production Facility is distributed with SPSS, so that SPSS runs
in an automated fashion. SPSS runs unattended and terminates after executing the last
command, so that you can perform other tasks while it runs. Production mode is useful
if you often run the same set of time-consuming analyses, such as weekly reports.

The SPSS Production Facility uses command syntax files to instruct SPSS what to
do. Each production run creates an output file with the same name as the production
job and the extension.spo. For example, a production job file namedprodjob.spp
creates an output document namedprodjob.spo.

Development tools. Visual Basic and SPSS OLE Automation.

Features. The program shows how to use SPSS OLE Automation to create an
application that handles routine, time-consuming tasks. This example also has a more
complex user interface and error-handling capability compared to the other examples.
It also demonstrates how to offer users the choice of running SPSS in a distributed
analysis mode, introducingISpssCSApp, ISpssServers, andISpssServer.

Location. The source code is distributed on the SPSS for Windows CD-ROM in
\SPSS\Developer\Programs\Visual Basic\Source code for SPSS Production Facility.
The executable,spssprod.exe, is located in your SPSS for Windows installation
directory (C:\Program Files\SPSS by default).

Requirements. This example requires SPSS for Windows. It can be used with any valid
SPSS command syntax file.

Running the application. You can run thespssprod.vbp file from within Visual Basic or
executeprodmode.exe from your SPSS for Windows installation directory.

103

Addit ional Examples

Run Syntax Code
Figure 5-13
Running syntax from Windows Explorer

Description. The Run Syntax utility is distributed with SPSS torunan SPSS command
syntax file from the Windows Explorer. The utility launches SPSS, opens the syntax
file, runs it, and displays the output in a Viewer window. When SPSS for Windows is
installed, it automatically registers aRUN command for the syntax (*.sps) document.
TheRUN command executesrunsyntx.exe on the currently selected syntax file.

Development tools. Visual Basic and SPSS OLE Automation.

104

Chapter 5

Features. The program shows how you can use SPSS OLE Automation and the
Windows Registry to add commands to the Windows Explorer File and shortcut
menus. It introduces the Documents Collection (ISpssDocuments) and exercises the
ISpssSyntaxDoc, ISpssDataDoc, andISpssOutputDoc objects. You can see how
runsyntx.exe is registered by looking at the
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\SPSS.SyntaxDoc\shell\Run\command

key in the Windows Registry editor.

Location. The source code is distributed on the SPSS for Windows CD-ROM located
in \SPSS\Developer\Programs\Visual Basic\Source code for Runsyntx.exe. The
executable is in your SPSS for Windows installation directory (C:\Program Files\SPSS
by default).

Requirements. This example requires SPSS for Windows. It can be used with any valid
SPSS command syntax file.

Running the application. You can run therunsyntx.vbp file from within Visual Basic or
executerunsyntx.exe. This can be done as follows:

E Select a syntax (*.sps) file in the Windows Explorer.

E Right-click to get the shortcut menu.

E From the shortcut menu clickRun.

105

Addit ional Examples

Display Dictionary Information
Figure 5-14
Input/output DLL example

Description. This example demonstrates how to use the SPSS input/output DLL to
retrieve data dictionary information (for example, variable names) from an SPSS data
file. The user selects a file and views the dictionary information in a child window.
There are two versions of the program: one written in Visual C++ and one written in
Visual Basic.

Development tools. Visual Basic or Visual C++ and the SPSS input/output DLL. The
I/O DLL is documented in Appendix A.

Location. The program is located on the SPSS for Windows CD-ROM in
\SPSS\Developer\IO_DLL\Smpl_vb\dictlist.vbp and
\SPSS\Developer\IO_DLL\Smpl_cpp\dictlist.cpp.

Requirements. This example requires SPSS for Windows and the input/output DLL
spssio32.dll (or spssio16.dll in its 16-bit incarnation) that are included on the SPSS for

106

Chapter 5

Windows CD-ROM in\SPSS\Developer\IO_DLL\. You’ll need Visual Basic or Visual
C++ to compile the example.

Running the application. You can run the .vbp from within Visual Basic or run the.cpp
file from within Visual C++. Instructions for compiling executables are located in
\SPSS\Developer\IO_DLL\Smpl_vb\smpl_vb.doc and
\SPSS\Developer\IO_DLL\Smpl_cpp\smpl_cpp.doc on the SPSS for Windows
CD-ROM.

107

Appendix

A
SPSS Input/Output DLL

An SPSS data file is a binary file that contains the case data on which SPSS operates
and a dictionary describing the contents of the file. Many developers have
successfully created applications that directly read and write SPSS data files. Some of
these developers have asked for a dynamically linked library (DLL) to help them
manipulate the rather complex format of SPSS data files. The I/O DLL documented
in this appendix is designed to satisfy this need.

You can use the I/O DLL to:

� Read and write SPSS data files

� Set general file attributes, create variables

� Set values for variables

� Read cases

� Copy a dictionary

� Append cases to an SPSS data file

� Directly access data

Developers can call SPSS I/O DLL procedures in client programs written in C, Visual
Basic, and other programming languages. It is necessary to include the header file
spssdio.h. The specific calling conventions are__pascal for 16-bit programs and
__stdcall for 32-bit programs. The__stdcall conventions are compatible with
FORTRAN, although calling I/O DLL procedures is not specifically supported for
FORTRAN programs.

This appendix outlines the steps for developing an application using the I/O DLL
procedures. It also contains a description of each procedure.

108

Appendix A

The I/O DLL files are on the SPSS for Windows CD-ROM in\spss\developer\io_dll.
There are 16-bit and 32-bit versions.

Using the I/O DLL

The following sections list the sequence of procedures calls required to complete
specific tasks with the I/O DLL. See “DLL Procedure Reference” on p. 118 for detailed
information about each procedure.

Writing an SPSS Data File

The sequence of procedure calls to create an SPSS data file is as follows:

1. To open a physical file for output and to initialize internal data structures, call
spssOpenWrite.

2. To set general file attributes, such as file label and compression, callspssSetIdString

andspssSetCompression. These attributes may also be set anytime before the dictio-
nary is committed (see step 7).

3. To create one or more variables, callspssSetVarName.

4. To set attributes of variables, such as output formats, variable and value labels,
missing values, etc., call appropriate procedures, such asspssSetVarPrintFormat,
spssSetVarLabel, spssSetVarNValueLabel, etc. Variable creation and attribute set-
ting may be interleaved as long as no reference is made to a variable that has not
yet been created.

5. (Optional) If you want to set variable sets, Trends date variables, or multiple re-
sponse set information, callspssSetVariableSets, spssSetDateVariables, or
spssSetMultRespDefs.

6. To set the case weight variable, callspssSetCaseWeightVar.

7. To commit the dictionary, callspssCommitHeader. Dictionary information may no
longer be modified.

8. To prepare to set case data values, callspssGetVarHandle once for each variable
and save the returned variable handles. A variable handle contains an index that
allows data to be updated efficiently during case processing. While setting data
values, variables must be referenced via their handles and not their names.

109

SPSS Input/Output DLL

9. To set values of all variables for a case, callspssSetValueChar for string variables
andspssSetValueNumeric for numeric ones. To write out the case, call
spssCommitCaseRecord. Repeat from the beginning of this step until all cases are
written.

10. To terminate file processing, callspssCloseWrite.

Utility procedures such asspssSysmisVal and any of thespssConvert procedures may
be called at any time. They are useful primarily while setting case data values.

It is possible to construct complete cases in the form the cases would be written to an
uncompressed data file and then present them to the DLL for output (which will take
care of compression if necessary). Note that it is very easy to write out garbage this
way. To use this approach, replace step 8 and step 9 with the following steps:

11. To obtain the size of an uncompressed case record in bytes, callspssGetCaseSize.
Make sure that the size is what you think it should be. Allocate a buffer of that size.

12. Fill up the buffer with the correctly encoded numeric and string values, taking care of
blank padding and doubleword alignment. To write the case, callspssWholeCaseOut.
Repeat from the beginning of this step until all cases are written.

Copying a Dictionary

Developers can open a new file for output and initialize its dictionary from that of an
existing file. The function,spssOpenWriteCopy, that implements this feature is a slight
extension ofspssOpenWrite. It is useful when the dictionary or data of an existing file is
to be modified or all of its data is to be replaced. The typical sequence of operations is:

1. CallspssOpenWriteCopy (newFileName, oldFileName, ...) to open a new file initial-
ized with a copy of the old file’s dictionary.

2. CallspssOpenRead (oldFileName, ...) to access the old file’s data.

Appending Cases to a Existing SPSS Data File

To append cases, the existing data file must be compatible with the host system; that
is, the system that originally created the file must use the same bit ordering and the
same representation for the system-missing value as the host system. For example, a
file created on a computer that uses high-order-first bit ordering (for example,

110

Appendix A

Motorola) cannot be extended on an computer that uses low-order-first bit ordering (for
example, Intel).

When appending cases, no changes are made to the dictionary other than the number
of cases. The originating system and the creation date are not modified.

The sequence of procedure calls to append cases to an existing SPSS data file is as
follows:

1. To open a physical file and to initialize internal data structures, callspssOpenAppend.

2. To get general file attributes, such as file label, compression, and case weight, call
spssGetIdString, spssGetCompression, andspssGetCaseWeightVar. To get the list of
variable names and types, callspssGetVarNames, or callspssGetNumberofVaribles

andspssGetVarInfo if you are using Visual Basic. To get attributes of variables,
such as output formats, variable and value labels, missing values, etc., call
spssGetVarPrintFormat, spssGetVarLabel, spssGetVarNValueLabel(s), etc.

3. To set values of all variables for a case, callspssSetValueChar for string variables
andspssSetValueNumeric for numeric variables. To append the case, call
spssCommitCaseRecord. Repeat from the beginning of this step until all cases are
written.

4. To terminate file processing, callspssCloseAppend.

Utility procedures such asspssSysmisVal and any of thespssConvert procedures may
be called at any time. They are useful primarily while setting case data values.

For step 3, it is also possible to callspssWholeCaseOut to construct complete cases
in the form in which the cases would be written to an uncompressed data file and then
present them to the DLL for output (which will take care of compression if necessary).
The same precaution should be taken as you write whole cases to an SPSS data file.

Reading an SPSS Data File

The sequence of procedure calls to read an SPSS data file is much less restricted than
the sequence of calls to write an SPSS data file. Cases, of course, must be read in
sequence. However, calls that report file or variable attributes may be made anytime
after the file is opened. A typical sequence of steps is:

1. To open a physical file for input and to initialize internal data structures, call
spssOpenRead.

111

SPSS Input/Output DLL

2. To get general file attributes, such as file label, compression, and case weight, call
spssGetIdString, spssGetCompression, andspssGetCaseWeightVar. To get the list of
variable names and types, callspssGetVarNames, or callspssGetNumberofVaribles

andspssGetVarInfo if you are using Visual Basic. To get attributes of variables,
such as output formats, variable and value labels, missing values, etc., call
spssGetVarPrintFormat, spssGetVarLabel, spssGetVarNValueLabel(s), etc.

3. (Optional) If you want to set variable sets, Trends date variables, or multiple
response set information, callspssSetVariableSets, spssSetDateVariables, or
spssSetMultRespDefs.

4. To find out the number of cases in the file, callspssGetNumberofCases.

5. To prepare to read case values, callspssGetVarHandle once for each variable whose
values are of interest and save the returned variable handles. A variable handle
contains an index that allows data to be retrieved efficiently during case process-
ing. While retrieving data values, variables must be referenced via their handles
and not their names.

6. To read the next case into the library’s internal buffers, callspssReadCaseRecord.
To get values of variables for a case, callspssGetValueChar for string variables and
spssGetValueNumeric for numeric ones. Repeat from the beginning of this step un-
til all cases are read.

7. To terminate file processing, callspssCloseRead.

Utility procedures such asspssSysmisVal and any of thespssConvert procedures may
be called at any time. They are useful primarily while interpreting case data values. The
spssFree... procedures should also be used where appropriate to free dynamically
allocated data returned by the library.

Here, too, it is possible to receive from the DLL complete cases in the form in which
the cases would appear in an uncompressed data file. Extracting data values from the
case record is entirely up to the caller in this case. For this approach, replace step 5 and
step 6 with the following steps:

8. To obtain the size of an uncompressed case record in bytes, callspssGetCaseSize.
Allocate a buffer of that size.

9. To read the next case into your buffer, callspssWholeCaseIn. Extract the values
you need from the buffer. Repeat from the beginning of this step until all cases are
read.

112

Appendix A

Direct Access Input

The File I/O API supports direct access to the data in existing files. The basic
mechanism is to callspssSeekNextCase, specifying a zero-origin case number before
calling spssWholeCaseIn or spssReadCaseRecord. Note that direct reads from
compressed SPSS data files require reading all of the data up to the requested case—
that is, performance may not be sparkling when retrieving a few cases. Once an index
of the cases has been constructed, performance is adequate.

Working with SPSS Data Files

Variable Names and String Values

A user-definable SPSS variable name must be valid in the current locale. In SPSS for
Windows, variable names must obey the following rules:

� The name must begin with a letter. The remaining characters may be any letter, any
digit, a period, or the symbols @, #, _, or $.

� Variable names cannot end with a period. Names that end with an underscore
should be avoided (to avoid name conflicts with variables automatically created by
some procedures).

� The length of the name cannot exceed eight characters.

� Blanks and special characters (for example, !, ?, *) cannot be used.

� Each variable name must be unique; duplication is not allowed. Variable names are
not case sensitive. The namesNEWVAR, NewVar, andnewvar are all considered
identical.

� Reserved keywords (ALL, NE, EQ, TO, LE, LT, BY, OR, GT, AND, NOT, GE, and
WITH) cannot be used.

If the names in an SPSS data file created in another locale are invalid in the current
locale (for example, double-byte characters), the I/O DLL will create acceptable
names. These names are returned upon inquiry and can be used as legitimate
parameters in procedures requiring variable names. The names in the data file will not
be changed.

In the I/O DLL, procedures that return variable names return them in upper case as
null-terminated strings without any trailing blanks. Procedures that take variable

113

SPSS Input/Output DLL

names as input will accept mixed case and any number of trailing blanks without a
problem. These procedures change everything to upper case and trim trailing blanks
before using the variable names.

Similarly, procedures that return values of string variables return them as null-
terminated strings whose lengths are equal to the lengths of the variables. Procedures
that take string variable values as input accept any number of trailing blanks and
effectively trim the values to the variables’ lengths before using them.

Accessing Variable and Value Labels

Beginning with SPSS 7.5, the limit on the length of variable labels was increased from
120 to 256 bytes. There were two ways in which thespssGetVarLabel function could
be modified to handle the longer labels. First, it could continue to return a maximum
of 120 bytes for compatibility with existing applications. Second, it could return a
maximum ofSPSS_MAX_VARLABEL bytes for compatibility with new SPSS data files.
The resolution was to continue to return a maximum of 120 bytes and to introduce a
new function,spssGetVarLabelLong, which permits the client to specify the maximum
number of bytes to return. In anticipation of possible future increases in the maximum
width of value labels, two parallel functions,spssGetVarNValueLabelLong and
spssGetVarCValueLabelLong, were added for retrieving the value labels of numeric and
short string variables.

System-Missing Value

The special floating point value used to encode the system-missing value may differ
from platform to platform, and the value encoded in an SPSS data file may differ from
the one used on the host platform (one on which the application and the DLL are
running). Files written through the DLL use the host system-missing value, which may
be obtained by callingspssSysmisVal. For files being read using the DLL, data values
having the system-missing value encoded in the file are converted to the host system-
missing value; the system-missing value used in the data file is invisible to the user of
the DLL.

114

Appendix A

Measurement Level, Column Width, and Alignment

Starting with release 8.0, SPSS supports three additional variable attributes:
measurement level, column width, and alignment. These attributes are not necessarily
present an SPSS data file. However, when one attribute is recorded for a variable, all
three must be recorded for every variable. Default values are assigned as necessary.

For example, if a new data file is being created and the measurement level attribute
is explicitly set for one variable, default values will be assigned to measurement levels
of all remaining variables, and column widths and alignments will be assigned to all
variables. If no measurement level, column width, or alignment is assigned, the file
will be written without values for any attribute.

There are six new file I/O API functions to access to these attributes:
spssGetVarMeasureLevel, spssSetVarMeasureLevel, spssGetVarColumnWidth,
spssSetVarColumnWidth, spssGetVarAlignment, andspssSetVarAlignment.

Support for Documents

SPSS has aDOCUMENT command that can be used to store blocks of text in a data file.
Until release 8.0, the I/O API had no support for documents—stored documents, if any,
were discarded when opening an existing file, and there was no way to add documents
to a new file. Starting with release 8.0, limited support for stored documents is
provided that allows the user to retain existing documents.

When a file is opened for reading, its documents record is read and kept; if a file
being written out has documents, they are stored in the dictionary. Since there is still
no way to explicitly get or set documents, one may wonder how it is possible for an
output file to acquire documents. The answer is, by usingspssOpenWriteCopy to
initialize a dictionary or by calling thespssCopyDocuments function to copy
documents from one file to another. If an output file is created with
spssOpenWriteCopy, the documents record of the file the dictionary is copied from is
retained and written out when the dictionary is.

115

SPSS Input/Output DLL

Coding Your Program

Any source file that references DLL procedures must include the headerspssdio.h. The
latter provides ANSI C prototypes for the DLL procedures and defines useful macros;
it does not require any other headers to be included beyond what your program
requires. To protect against name clashes, all DLL function names start withspss and
all macro names are prefixed withSPSS_. In addition to the macros explicitly
mentioned in the DLL procedures,spssdio.h defines macros for the maximum sizes of
various SPSS data file objects that may help to make your program alittle more
readable:

SPSS_MAX_VARNAME Variable name

SPSS_MAX_SHORTSTRING Short string variable

SPSS_MAX_IDSTRING File label string

SPSS_MAX_LONGSTRING Long string variable

SPSS_MAX_VALLABEL Value label

SPSS_MAX_VARLABEL Variable label

16-Bit Versus 32-Bit DLL

There are two I/O DLL versions implemented for SPSS for Windows: the 16-bit
version withspssio16.dll andspssio16.lib and the 32-bit version withspssio32.dll and
spssio32.lib. The header file,spssdio.h, is the same.

The 16-bit version is subject to the following size limitations:

� The case size cannot exceed 65,504. The case size is computed by summing up the
lengths of all variables, counting all numeric variables as having a length of 8 and
rounding the length of string variables up to the next multiple of 8.

� A value labels set cannot contain labels for more than 4094 values.

� The length of the variable sets information must be less than 32,767.

� The number of elements comprising Trends date variables information cannot
exceed 16,376.

An attempt to read a file exceeding these limits triggers the errorSPSS_INVALID_FILE;
an attempt to create a file exceeding these limits triggers the error
SPSS_NO_MEMORY.

116

Appendix A

Visual Basic Clients

The filespssdio.bas contains declarations of most of the API functions in a format that
can be used in Visual Basic. The file also contains definitions of symbolic constants for
all of the function return codes and the SPSS format codes. Three comments are
relevant to this file:

� It is necessary to have a knowledge of Chapter 26, “Calling Procedures in DLLs,”
in theMicrosoft Visual Basic Programmer’s Guide. Note that where the API
function parameter should be anint, a 32-bit Visual Basic application should use a
long, but a 16-bit application should use aninteger. Also, you should be careful to
make string parameters suitably long before calling the API.

� Some functions, such asspssGetVarNames, are not compatible with being called
from Visual Basic. The declarations of these functions are present only as
comments.

� Only about 20% of the functions have actually been called from a working Visual
Basic program. The inference is that some of the declarations are probably
incorrect.

The functionspssGetVarNames is a little difficult to call from languages other than C
because it returns pointers to two vectors. BASIC and FORTRAN are not very well
equipped to deal with pointers. Instead, use functionsspssGetNumberofVariables and
spssGetVarInfo, which enable the client program to access the same information in a
little different way. Another function,spssHostSysmisVal, is provided as an alternative
to spssSysmisVal to avoid returning a double on the stack.

Borland C++

Borland C++ users can use release 8.0.1 and later ofspssio32.dll and the associated
spssdio.h. They cannot, however, use the distributedspssio32.lib. It is necessary to
generate an import library from the distributed DLL using theimplib.exe console
application, which comes with the compiler using the following syntax:

implib -w spssio32.lib spssio32.dll

The-w switch suppresses almost 100 warnings, such as the following:

Warning duplicate symbol: spssCloseAppend

117

SPSS Input/Output DLL

Sample Programs

The developer’s tools include a sample Windows MDI application, described in
Chapter 5 on p. 105, which utilizes the I/O DLL to read dictionary information from
an SPSS data file. The source files for the application are present in both 16-bit and 32-
bit versions, asdictls16 anddictls, respectively.

The dictionary sample code was initially written using the Visual C++ IDE
(Integrated Development Environment). As distributed, it is composed of two principal
C++ source files:dictlist.cpp, which contains the boilerplate for the application, the
MDI frame window, the child window, and the view; anddictdoc.cpp, which
implements the document class and contains all of the I/O DLL calls.

Two make files are supplied:dictls16.mak, which builds the 16-bit version of the
application in a subdirectory named16 and is compatible with Microsoft Visual C++
1.52, anddictls32.mak, which builds the 32-bit version in a subdirectory named32 and
is compatible with Microsoft Visual C++ 4.0. The make files generate applications
using the DLL resident version of the MFC (Microsoft Foundation Classes) run-time.
For different compiler versions, you may need to modify the make files. These make
files are not those generated by the IDE and should be easy to modify.

The DICTLIST sample application is distributed with the I/O DLL on the SPSS for
Windows CD-ROM in\spss\developer\io_dll\smpl_cpp.

The developer’s tools also include a sample Visual Basic application. This
application mimics the sample C++ application in that it displays the dictionaries of
SPSS data files. The application consists of an MDI frame window (dictmdi.frm), an
about box (dictabou.frm), and an MDI child window (dictchld.frm). The MDI child
window does most of the work and makes most of the calls to the API functions. A
Visual Basic project file (dictlist.vbp) is also provided. When working with this project,
the function declarations file (spssdio.bas) must be available on the SPSS for Windows
CD-ROM in \spss\developer\io_dll\smpl_vb.

118

Appendix A

DLL Procedure Reference

The procedures are listed in alphabetical order.

spssAddMultRespDefC

int spssAddMultRespDefC(int handle, const char *mrSetName,
const char *mrSetLabel, int isDichotomy, const char *countedValue,
const char **varNames, int numVars)

Description

This function adds a multiple response set definition over short string variables to the
dictionary.

Parameter Description

handle Handle to the data file.

mrSetName Name of the multiple response set. A null-terminated string up to
seven characters long but otherwise obeying the rules for a valid
variable name. Case is immaterial.

mrSetLabel Label for the multiple response set. A null-terminated string up to
60 characters long; only the first 60 characters are used if longer.
May beNULL or the empty string to indicate that no label is desired.

isDichotomy Nonzero if the variables in the set are coded as dichotomies, zero
otherwise.

countedValue A null-terminated string containing the counted value. Necessary
whenisDichotomy is nonzero, in which case it must be 1–8 charac-
ters long, and ignored otherwise. May beNULL if isDichotomy is
zero.

varNames Array of null-terminated strings containing the names of the vari-
ables in the set. All variables in the list must be short strings. Case
is immaterial.

numVars Number of variables in the list (invarNames). Must be at least two.

119

SPSS Input/Output DLL

Returns

If all goes well, adds the multiple response set to the dictionary and returns zero
(SPSS_OK) or negative (a warning). Otherwise, returns a positive error code and does
not add anything to the multiple response sets already defined, if any.

Error Code Description

SPSS_OK No error

SPSS_EXC_LEN60 Only the first 60 characters of the label were used
(warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_VARIABLES Fewer than two variables in list

SPSS_ EXC_STRVALUE isDichotomy is nonzero andcountedValue is NULL,
empty, or longer than 8 characters

SPSS_INVALID_MRSETNAME The multiple response set name is invalid

SPSS_DUP_MRSETNAME The multiple response set name is a duplicate

SPSS_INVALID_MRSETDEF Existing multiple response set definitions are
invalid

SPSS_INVALID_VARNAME One or more variable names in list are invalid

SPSS_VAR_NOTFOUND One or more variables in list were not found in
dictionary

SPSS_SHORTSTR_EXP At least one variable in the list is numeric or long
string

SPSS_NO_MEMORY Insufficient memory to store the definition

spssAddMultRespDefN

int spssAddMultRespDefN(int handle, const char *mrSetName,
const char *mrSetLabel, int isDichotomy, long countedValue,
const char **varNames, int numVars)

120

Appendix A

Description

This function adds a multiple response set definition over numeric variables to the
dictionary.

Parameter Description

handle Handle to the data file.

mrSetName Name of the multiple response set. A null-terminated string up to
seven characters long but otherwise obeying the rules for a valid
variable name. Case is immaterial.

mrSetLabel Label for the multiple response set. A null-terminated string up to
60 characters long; only the first 60 characters are used if longer.
May beNULL or the empty string to indicate no label is desired.

isDichotomy Nonzero if the variables in the set are coded as dichotomies, zero
otherwise.

countedValue The counted value. Necessary whenisDichotomy is nonzero and
ignored otherwise. Note that the value is specified as along int, not
a double.

varNames Array of null-terminated strings containing the names of the vari-
ables in the set. All variables in the list must be numeric. Case is
immaterial.

numVars Number of variables in the list (invarNames). Must be at least two.

Returns

If all goes well, adds the multiple response set to the dictionary and returns zero
(SPSS_OK) or negative (a warning). Otherwise, returns a positive error code and does
not add anything to the multiple response sets already defined, if any.

Error Code Description

SPSS_OK No error

SPSS_EXC_LEN60 Only the first 60 characters of the label were used
(warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

121

SPSS Input/Output DLL

SPSS_NO_VARIABLES Fewer than two variables in list

SPSS_INVALID_MRSETNAME The multiple response set name is invalid

SPSS_DUP_MRSETNAME The multiple response set name is a duplicate

SPSS_INVALID_MRSETDEF Existing multiple response set definitions are
invalid

SPSS_INVALID_VARNAME One or more variable names in list are invalid

SPSS_VAR_NOTFOUND One or more variables in list were not found in
dictionary

SPSS_NUME_EXP At least one variable in the list is not numeric

SPSS_NO_MEMORY Insufficient memory to store the definition

spssCloseAppend

int spssCloseAppend (int handle)

Description

This function closes the data file associated withhandle, which must have been opened
for appending cases usingspssOpenAppend. The file handlehandle becomes invalid
and no further operations can be performed using it.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not appending, cases

SPSS_FILE_WERROR File write error

122

Appendix A

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenAppend("bank.sav", &fH);
...
error = spssCloseAppend(fH);
...
/* Handle fH is now invalid */

}

See alsospssOpenAppend.

spssCloseRead

int spssCloseRead (int handle)

Description

This function closes the data file associated withhandle, which must have been opened
for reading usingspssOpenRead. The file handlehandle becomes invalid and no
further operations can be performed using it.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE File is open for writing, not reading

123

SPSS Input/Output DLL

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenRead("bank.sav", &fH);
...
error = spssCloseRead(fH);
...
/* Handle fH is now invalid */

}

See alsospssOpenRead.

spssCloseWrite

int spssCloseWrite (int handle)

Description

This function closes the data file associated withhandle, which must have been opened
for writing usingspssOpenWrite. The file handlehandle becomes invalid and no further
operations can be performed using it.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten withspssCommitHeader

SPSS_FILE_WERROR File write error

124

Appendix A

Example

SeespssSetValueNumeric.

See alsospssOpenWrite.

spssCommitCaseRecord

int spssCommitCaseRecord (int handle)

Description

This function writes a case to the data file specified by thehandle. It must be called
after setting the values of variables throughspssSetValueNumeric and
spssSetValueChar. Any variables left unset will get the system-missing value if they are
numeric and all blanks if they are strings. UnlessspssCommitCaseRecord is called, the
case will not be written out.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten withspssCommitHeader

SPSS_FILE_WERROR File write error

125

SPSS Input/Output DLL

Example

SeespssSetValueNumeric.

See alsospssSetValueNumeric, spssSetValueChar.

spssCommitHeader

int spssCommitHeader (int handle)

Description

This function writes the data dictionary to the data file associated withhandle. Before
any case data can be written, the dictionary must be committed; once the dictionary has
been committed, no further changes can be made to it.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader.

SPSS_DICT_EMPTY No variables defined in the dictionary.

SPSS_FILE_WERROR File write error. In case of this error, the file associated
with handle is closed andhandle is no longer valid.

SPSS_NO_MEMORY Insufficient memory.

SPSS_INTERNAL_VLABS Internal data structures of the DLL are invalid. This
signals an error in the DLL.

126

Appendix A

Example

#include "spssdio.h"

void func()

{
int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("data.sav", &fH);
...
/* Create some variables */
error = spssSetVarName(fH, "AGE", SPSS_NUMERIC);
...
/* Label variables -- Not required but useful */
error = spssSetVarLabel(fH, "AGE", "Age of the Employee");
...
/* Done with dictionary definition; commit dictionary */
error = spssCommitHeader(fH);
/* Handle errors... */
...

}

spssConvertDate

int spssConvertDate (int day, int month, int year, double *spssDate)

Description

This function converts a Gregorian date expressed as day-month-year to the internal
SPSS date format. The time portion of the date variable is set to 0:00. To set the time
portion of the date variable to another value, usespssConvertTime and add the resulting
value to*spssDate. Dates before October 15, 1582, are considered invalid.

Parameter Description

day Day of month (1–31)

month Month (1–12)

year Year in full (94 means 94 A.D.)

spssDate Pointer to date in internal SPSS format

127

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_DATE Invalid date

Example

#include "spssdio.h"

void func()

{
int fH; /* file handle */
int error; /* error code */
double vH; /* variable handle */
double sDate; /* SPSS date */
double sTime; /* SPSS time */
...
error = spssOpenWrite("data.sav", &fH);
...
/* Create a numeric variable and set its print format
** to DATETIME28.4
*/
error = spssSetVarName(fH, "TIMESTMP", SPSS_NUMERIC);
...
error =
spssSetVarPrintFormat(fH,"TIMESTMP",SPSS_FMT_DATE_TIME,4, 28);
...
/* Get variable handle for TIMESTMP */
error = spssGetVarHandle(fH, "TIMESTMP", &vH);
...
/* Set value of TIMESTMP for first case to May 9, 1948,
** 10:30 AM. Do this by first using spssConvertDate to get
** a date value equal to May 9, 1948, 0:00 and adding to it
** a time value for 10:30:00.
*/
error = spssConvertDate(9, 5, 1948, &sDate);
...
/* Note that the seconds value is double, not int */
error = spssConvertTime(0L, 10, 30, 0.0, &sTime);
...
/* Set the value of the date variable */
error = spssSetValueNumeric(fH, vH, sDate+sTime);
...

}

See alsospssConvertTime.

128

Appendix A

spssConvertSPSSDate

int spssConvertSPSSDate (int *day, int *month, int *year, double spssDate)

Description

This function converts the date (as distinct from time) portion of a value in internal
SPSS date format to Gregorian style.

Parameter Description

day Pointer to day of month value

month Pointer to month value

year Pointer to year value

spssDate Date in internal SPSS format

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_DATE The date value (spssDate) is negative

129

SPSS Input/Output DLL

Example

#include <stdio.h>

#include "spssdio.h"

void func()

{
int fH; /* file handle */
int error; /* error code */
int day, month, year; /* date components */
int hour, min; /* time components */
long jday; /* Julian day */
double sec; /* seconds component*/
double vH /* variable handle */
double sDate; /* SPSS date+time */
...
error = spssOpenRead("myfile.sav", &fH);
...
/* Get handle for TIMESTMP, a date variable */
error = spssGetVarHandle(fH, "TIMESTMP" &vH);
...
/* Read first case and print value of TIMESTMP */
error = spssReadCaseRecord(fH);
...
error = spssGetValueNumeric(fH, vH, &sDate);
...
error = spssConvertSPSSDate(&day, &month, &year, sDate);
...
/* We ignore jday, day number since Oct. 14, 1582 */
error =
spssConvertSPSSTime(&jday, &hour, &min, &sec, sDate);
...
printf("Month/Day/Year: %d/%d/%d, H:M:S: %d:%d:%g\n",

month, day, year, hour, min, sec);
...

}

130

Appendix A

spssConvertSPSSTime

int spssConvertSPSSTime

(long *day, int *hour, int *minute, double *second, double spssTime)

Description

This function breaks a value in internal SPSS date format into a day number (since
October 14, 1582) plus the hour, minute, and second values. Note that the seconds
value is stored in a double since it may have a fractional part.

Parameter Description

day Pointer to day count value (note that the value is long)

hour Pointer to hour of day

minute Pointer to minute of the hour

second Pointer to second of the minute

spssTime Date in internal SPSS format

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_TIME The date value (SpssTime) is negative

Example

SeespssConvertSPSSDate.

spssConvertTime

int spssConvertTime (long day, int hour, int minute, double second, double *spssTime)

131

SPSS Input/Output DLL

Description

This function converts a time given as day, hours, minutes, and seconds to the internal
SPSS format. The day value is the number of days since October 14, 1582, and is
typically zero, especially when this function is used in conjunction with
spssConvertDate. Note that the seconds value is stored in a double since it may have a
fractional part.

Parameter Description

day Day (non-negative; note that the value is long)

hour Hour (0–23)

minute Minute (0–59)

second Seconds (non-negative and less than 60)

spssTime Pointer to time in internal SPSS format

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_TIME Invalid time

Example

SeespssConvertDate.

See alsospssSetValueNumeric.

spssCopyDocuments

int spssCopyDocuments (int fromHandle, int toHandle)

132

Appendix A

Description

This function copies stored documents, if any, from the file associated withfromHandle
to that associated withtoHandle. The latter must be open for output. If the target file
already has documents, they are discarded. If the source file has no documents, the
target will be set to have none, too.

Parameter Description

fromHandle Handle to the file documents are to be copied from.

toHandle Handle to the file documents are to be copied to. Must be open for
output.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE At least one handle is not valid

SPSS_OPEN_RDMODE The target file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called for the
target file

spssFreeDateVariables

int spssFreeDateVariables (long* dateInfo)

Description

This function is called to return the memory allocated byspssGetDateVariables.

Parameter Description

dateInfo Vector of date variable indexes

133

SPSS Input/Output DLL

Returns

Always returnsSPSS_OK indicating success.

See alsospssGetDateVariables.

spssFreeMultRespDefs

int spssFreeMultRespDefs(char *mrespDefs)

Description

This function releases the memory which was acquired byspssGetMultRespDefs.

Parameter Description

mrespDefs ASCII string containing the definitions

Returns

The function always succeeds and always returnsSPSS_OK.

See alsospssGetMultRespDefs.

spssFreeVarCValueLabels

int spssFreeVarCValueLabels (char **values, char **labels, int numLabels)

Description

This function frees the two arrays and the value and label strings allocated on the heap
by spssGetVarCValueLabels.

Parameter Description

values Array of pointers to values returned byspssGetVarCValueLabels

labels Array of pointers to labels returned byspssGetVarCValueLabels

numLabels Number of values or labels returned byspssGetVarCValueLabels

134

Appendix A

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_CANNOT_FREE Unable to free because arguments are illegal or
inconsistent (for example, negativenumLabels)

Example

SeespssGetVarNValueLabels.

See alsospssFreeVarCValueLabels.

spssFreeVariableSets

int spssFreeVariableSets (char *varSets)

Description

This function is called to return the memory allocated byspssGetVariableSets.

Parameter Description

varSets The string defining the variable sets

Returns

Always returnsSPSS_OK indicating success.

See alsospssGetVariableSets.

135

SPSS Input/Output DLL

spssFreeVarNValueLabels

int spssFreeVarNValueLabels (double *values, char **labels, int numLabels)

Description

This function frees the two arrays and the label strings allocated on the heap by
spssGetVarNValueLabels.

Parameter Description

values Array of values returned byspssGetVarNValueLabels

labels Array of pointers to labels returned byspssGetVarNValueLabels

numLabels Number of values or labels returned byspssGetVarNValueLabels

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_CANNOT_FREE Unable to free because arguments are illegal or
inconsistent (for example, negativenumLabels)

Example

SeespssGetVarNValueLabels.

See alsospssFreeVarCValueLabels.

spssFreeVarNames

int spssFreeVarNames (char **varNames, int *varTypes, int numVars)

136

Appendix A

Description

This function frees the two arrays and the name strings allocated on the heap by
spssGetVarNames.

Parameter Description

varNames Array of pointers to names returned byspssGetVarNames

varTypes Array of variable types returned byspssGetVarNames

numVars Number of variables returned byspssGetVarNames

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_CANNOT_FREE Unable to free because arguments are illegal or
inconsistent (for example, negativenumVars)

Example

SeespssGetVarNames.

spssGetCaseSize

int spssGetCaseSize (int handle, long *caseSize)

Description

This function reports the size of a raw case record for the file associated withhandle.
The case size is reported in bytes and is meant to be used in conjunction with the low-
level case input/output proceduresspssWholeCaseIn andspssWholeCaseOut.

Parameter Description

handle Handle to the data file

caseSize Pointer to size of case in bytes

137

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_DICT_NOTCOMMIT The file is open for output, and the dictionary has
not yet been written withspssCommitHeader

Example

SeespssWholeCaseIn.

See alsospssWholeCaseIn, spssWholeCaseOut.

spssGetCaseWeightVar

int spssGetCaseWeightVar (int handle, const char *varName)

Description

This function reports the name of the case weight variable. The name is copied to the
buffer pointed to byvarName as a null-terminated string. Since a variable name can be
up to 8 characters in length, the size of the buffer must be at least 9.

Parameter Description

handle Handle to the data file

varName Pointer to the buffer to hold name of the case weight variable

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

138

Appendix A

Error Code Description

SPSS_OK No error.

SPSS_NO_CASEWGT A case weight variable has not been defined for this
file (warning).

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_INVALID_CASEWGT The given case weight variable is invalid. This error
signals an internal problem in the implementation
of the DLL and should never occur.

Example

#include <stdio.h>

#include "spssdio.h"

void func()

{
int fH; /* file handle */
int error; /* error code */

char caseWeight[9]; /* case weight variable */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get and print the case weight variable of this file */
error = spssGetCaseWeightVar(fH, caseWeight);
if (error == SPSS_NO_CASEWGT)

printf("The file is unweighted.\n");
else if (error == SPSS_OK)

printf("The case weight variable is: %s\n", caseWeight);
else /* Handle error */

...

}

spssGetCompression

int spssGetCompression (int handle, int *compSwitch)

Description

This function reports the compression attribute of an SPSS data file.

Parameter Description

handle Handle to the data file.

compSwitch Pointer to compression attribute. Upon return,*compSwitch is 1 if
the file is compressed; 0 otherwise.

139

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

Example

#include <stdio.h>

#include "spssdio.h"

void func()

{
int fH; /* file handle */
int error; /* error code */
int compSwitch; /* compression switch */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Print whether the data file is compressed. */
error = spssGetCompression(fH, &compSwitch);
if (error == SPSS_OK)
{

printf("File is ");
if (compSwitch)

printf("compressed.\n");
else

printf("uncompressed.\n");
}

}

spssGetDateVariables

int spssGetDateVariables (int handle, int *numofElements, long **dateInfo)

140

Appendix A

Description

This function reports the Trends date variable information, if any, in an SPSS data file.
It places the information in a dynamically allocated long array, sets*numofElements to
the number of elements in the array, and sets*dateInfo to point to the array. The caller
is expected to free the array by callingspssFreeDateVariables when it is no longer
needed. The variable information is copied directly from record 7, subtype 3. Its first six
elements comprise the “fixed” information, followed by a sequence of one or more
three-element groups.

Parameter Description

handle Handle to the data file

numofElements Number of elements in allocated array

dateInfo Pointer to first element of the allocated array

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_DATEINFO There is no Trends date variable information in the
file (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_NO_MEMORY Insufficient memory

141

SPSS Input/Output DLL

Example

#include <stdio.h>

#include <stdlib.h>

#include "spssdio.h"

void func()

{
int fH; /* file handle */
int numD; /* number of elements */
long *dateInfo; /* pointer to date variable info. */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get & print TRENDS date variables info. */
error = spssGetDateVariables(fH, &numD, &dateInfo);
if (error == SPSS_NO_DATEINFO)

printf("No TRENDS information.\n");
else if (error == SPSS_OK)
{

if (numD < 6 || numD%3 != 0)
{

/* Should never happen */
printf("Date info format error.\n");
free(dateInfo);
return;

}
/*Print the first six elements followed by groups of three */
...
/* Remember to free array */
spssFreeDateVariables(dateInfo);

}
...

}

See alsospssSetDateVariables, spssFreeDateVariables.

spssGetDEWFirst

int spssGetDEWFirst (const int handle, void *pData, const long maxData, long *nData)

Description

The client can retrieve DEW information (file information that is private to the SPSS
Data Entry product) from a file in whatever increments are convenient. The first such
increment is retrieved by callingspssGetDEWFirst, and subsequent segments are
retrieved by callingspssGetDEWNext as many times as necessary. As with
spssGetDEWInfo, spssGetDEWFirst will return SPSS_NO_DEW if the file was written
with a byte order that is the reverse of that of the host.

142

Appendix A

Parameter Description

handle Handle to the data file

pData Returned as data from the file

maxData Maximum bytes to return

nData Returned as number of bytes returned

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_DEW File contains no DEW information (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_FILE_BADTEMP Error accessing the temporary file

See alsospssGetDEWInfo, spssGetDEWNext.

spssGetDEWInfo

int spssGetDEWInfo (const int handle, long *pLength, long *pHashTotal)

Description

This function can be called before actually retrieving DEW information (file
information that is private to the SPSS Data Entry product) from a file, to obtain some
attributes of that information—specifically its length in bytes and its hash total. The
hash total is, by convention, contained in the last four bytes to be written. Because it is
not cognizant of the structure of the DEW information, the I/O DLL is unable to correct
the byte order of numeric information generated on a foreign host. As a result, the
DEW information is discarded if the file has a byte order that is the reverse of that of
the host, and calls tospssGetDEWInfo will return SPSS_NO_DEW.

143

SPSS Input/Output DLL

Parameter Description

handle Handle to the data file

pLength Returned as the length in bytes

pHashTotal Returned as the hash total

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_NO_DEW File contains no DEW information (warning)

spssGetDEWNext

int spssGetDEWNext (const int handle, void *pData, const long maxData, long *nData)

Description

The client can retrieve DEW information (file information that is private to the SPSS
Data Entry product) from a file in whatever increments are convenient. The first such
increment is retrieved by callingspssGetDEWFirst, and subsequent segments are
retrieved by callingspssGetDEWNext as many times as necessary. As with
spssGetDEWInfo, spssGetDEWFirst will return SPSS_NO_DEW if the file was written
with a byte order that is the reverse of that of the host.

Parameter Description

handle Handle to the data file

pData Returned as data from the file

maxData Maximum bytes to return

nData Returned as number of bytes returned

144

Appendix A

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_DEW_NOFIRST spssGetDEWFirst was never called

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_FILE_BADTEMP Error accessing the temporary file

See alsospssGetDEWInfo, spssGetDEWFirst.

spssGetEstimatedNofCases

int spssGetEstimatedNofCases(const int handle, long *caseCount)

Description

Although not strictly required for direct access input, this function helps in reading
SPSS data files from releases earlier than 6.0. Some of these data files did not contain
number of cases information, andspssGetNumberofCases will return –1 cases. This
function will return a precise number for uncompressed files and an estimate (based on
overall file size) for compressed files. It cannot be used on files open for appending
data.

Parameter Description

handle Handle to the data file

caseCount Returned as estimatedn of cases

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

145

SPSS Input/Output DLL

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE The file is open for writing, not reading

SPSS_FILE_RERROR Error reading the file

See alsospssGetNumberofCases.

spssGetIdString

int spssGetIdString (int handle, char *id)

Description

This function copies the file label of the SPSS data file associated withhandle into the
buffer pointed to byid. The label is at most 64 characters long and null-terminated.
Thus, the size of the buffer should be at least 65. If an input data file is associated with
the handle, the label will be exactly 64 characters long, padded with blanks as
necessary.

Parameter Description

handle Handle to the data file

id File label buffer

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

146

Appendix A

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
char id[65]; /* file label */
...
error = spssOpenRead("bank.sav", &fH);
...
error = spssGetIdString(fH, id);
if (error == SPSS_OK)

printf("File label: %s\n", id);
...

}

spssGetMultRespDefs

int spssGetMultRespDefs (const int handle, char **mrespDefs)

Description

This function retrieves the definitions from an SPSS data file. The definitions are
stored as a null-terminated ASCII string that is very similar to that containing the
variable set definitions. The memory allocated by this function to contain the string
must be freed by callingspssFreeMultRespDefs. If the file contains no multiple
response definitions, *mrespDefs is set toNULL, and the function returns the warning
codeSPSS_NO_MULTRESP.

Parameter Description

handle Handle to the data file

mrespDefs Returned as a pointer to a string

147

SPSS Input/Output DLL

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_MULTRESP No definitions on the file (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_NO_MEMORY Insufficient memory to contain the string

See alsospssFreeMultRespDefs.

spssGetNumberofCases

int spssGetNumberofCases (int handle, long *numofCases)

Description

This function reports the number of cases present in a data file open for reading.

Parameter Description

handle Handle to the data file

numofCases Pointer to number of cases

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE File is open for writing, not reading

148

Appendix A

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
long count; /* Number of cases */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get & print the number of cases present in the file. */
error = spssGetNumberofCases(fH, &count);
if (error == SPSS_OK)

printf("Number of cases: %ld\n");
...

}

spssGetNumberofVariables

int spssGetNumberofVariables (int handle, long *numVars)

Description

This function reports the number of variables present in a data file.

Parameter Description

handle Handle to the data file

numVars Pointer to number of variables

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_DICT_NOTCOMMIT Dictionary has not been committed

SPSS_INVALID_FILE Data file contains no variables

149

SPSS Input/Output DLL

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
long count; /* Number of variables*/
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get & print the number of variables present in the file. */
error = spssGetNumberofVariables(fH, &count);
if (error == SPSS_OK)

printf("Number of variables: %ld\n");
...

}

spssGetReleaseInfo

int spssGetReleaseInfo (int handle, int relinfo[])

Description

This function reports release- and machine-specific information about the file
associated withhandle. The information consists of an array of eightint values copied
from record type 7, subtype 3 of the file, and is useful primarily for debugging. The
array elements are, in order, release number (index 0), release subnumber (1), special
release identifier number (2), machine code (3), floating-point representation code (4),
compression scheme code (5), big/little-endian code (6), and character representation
code (7).

Parameter Description

handle Handle to the data file.

relinfo Array of int in which release- and machine-specific data will be
stored. This array must have at least eight elements.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values (with one exception noted below).

150

Appendix A

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_NO_TYPE73 There is no type 7, subtype 3 record present. This
code should be regarded as a warning even though
it is positive. Files without this record are valid.

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
int relInfo[8]; /* release info */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get & print release and machine-specific info. */
error = spssGetReleaseInfo(fH, relInfo);
if (error == SPSS_OK)
{

printf("Release & machine information:\n");
int i;
for (i = 0; i < 8; ++i)

printf(" Element %d: %d\n", i, relInfo[i]);
}
...

}

spssGetSystemString

int spssGetSystemString (int handle, char *sysName)

Description

This function returns the name of the system under which the file was created. It is a
40-byte blank-padded character field corresponding to the last 40 bytes of record type
1. Thus, in order to accommodate the information, the parametersysName must be at
least 41 bytes in length plus the terminating null character.

Parameter Description

handle Handle to the data file

sysName The originating system name

151

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
char sysName[41]; /* orignating system */
...
error = spssOpenRead("bank.sav", &fH);
...
error = spssGetIdString(fH, sysName);
if (error == SPSS_OK)

printf("Originating System: %s\n", sysName);
...

}

spssGetTextInfo

int spssGetTextInfo (int handle, char *textInfo)

Description

This function places the text data created by TextSmart as a null-terminated string in
the user-supplied buffertextInfo. The buffer is assumed to be at least 256 characters
long; the text data may be up to 255 characters long. If text data are not present in the
file, the first character intextInfo is set toNULL.

Parameter Description

handle Handle to the data file

textInfo Buffer for text data

152

Appendix A

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

spssGetTimeStamp

int spssGetTimeStamp (int handle, char *fileDate, char *fileTime)

Description

This function returns the creation date of the file as recorded in the file itself. The
creation date is a null-terminated 9-byte character field indd mmm yy format (27 Feb
96), and the receiving field must be at least 10 bytes in length. The creation time is a
null-terminated 8-byte character field inhh:mm:ss format (13:12:15), and the receiving
field must be at least 9 bytes in length.

Parameter Description

handle Handle to the data file

fileDate File creation date

fileTime File creation time

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

153

SPSS Input/Output DLL

spssGetValueChar

int spssGetValueChar (int handle, double varHandle, char *value, int valueSize)

Description

This function gets the value of a string variable for the current case, which is the case
read by the most recent call tospssReadCaseRecord. The value is returned as a null-
terminated string in the caller-provided buffervalue; the length of the string is the
length of the string variable. The argumentvalueSize is the allocated size of the buffer
value, which must be at least the length of the variable plus 1.

Parameter Description

handle Handle to the data file

varHandle Handle of the variable

value Buffer for the value of the string variable

valueSize Size ofvalue

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_WRMODE File is open for writing, not reading.

SPSS_INVALID_CASE Current case is not valid. This may be because no
spssReadCaseRecord calls have been made yet or
because the most recent call failed with error or en-
countered the end of file.

SPSS_STR_EXP Variable associated with the handle is numeric.

SPSS_BUFFER_SHORT Buffer value is too short to hold the value.

154

Appendix A

Example
#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
int numV; /* number of variables */
int *typesV; /* variable types */
char **namesV; /* variable names */
double handlesV[100]; /* assume no more than 100 variables */
char cValue[256]; /* long enough for any string variable */
long nCases; /* number of cases */
long casesPrint; /* number of cases to print */
long case; /* case index */
double nValue; /* numeric value */
int i; /* variable index */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get variable names and types */
error = spssGetVarNames(fH, &numV, &namesV, &typesV);
...
if (numV > 100)
{

printf("Too many variables; increase program capacity.\n");
spssFreeVarNames(namesV, typesV, numV);
return;

}
/* Get & store variable handles */
for (i = 0; i < numV; ++i)
{

error = spssGetVarHandle(fH, namesV[i], &handlesV[i]);
if (error != SPSS_OK) ...

}
/* Get the number of cases */
error = spssGetNumberofCases(fH, &nCases);
...
/* Print at most the first ten cases */
casesPrint = (nCases < 10) ? nCases : 10;
for (case = 1; case <= casesPrint; ++case)
{

error = spssReadCaseRecord(fH);
...
printf("Case %ld\n", case);
for (i = 0; i < numV; ++I)
{

if (typesV[i] == 0)
{

/* Numeric */
error = spssGetValueNumeric(fH, handlesV[i], &nValue);
if (error == SPSS_OK)

printf(" %ld\n", nValue);
else ...

}
else
{

/* String */
error = spssGetValueChar(fH, handlesV[i], cValue, 256);
if (error == SPSS_OK)

printf(" %s\n", cValue);
else ...

}
}

}
/* Free the variable names & types */

spssFreeVarNames(namesV, typesV, numV);
}

155

SPSS Input/Output DLL

spssGetValueNumeric

int spssGetValueNumeric (int handle, double varHandle, double *value)

Description

This function gets the value of a numeric variable for the current case, which is the case
read by the most recent call tospssReadCaseRecord.

Parameter Description

handle Handle to the data file

varHandle Handle to the variable

value Pointer to the value of the numeric variable

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_WRMODE File is open for writing, not reading.

SPSS_INVALID_CASE Current case is not valid. This may be because no
spssReadCaseRecord calls have been made yet or
because the most recent call failed with error or en-
countered the end of file.

SPSS_NUME_EXP Variable associated with the handle is not numeric.

Example

SeespssGetValueChar.

156

Appendix A

spssGetVarAlignment

int spssGetVarAlignment (int handle, const char *varName, int *alignment)

Description

This function reports the value of the alignment attribute of a variable.

Parameter Description

handle Handle to the data file.

varName Variable name.

alignment Pointer to alignment. Set toSPSS_ALIGN_LEFT,
SPSS_ALIGN_RIGHT, or SPSS_ALIGN_CENTER.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarCMissingValues

int spssGetVarCMissingValues

(int handle, const char *varName, int *missingFormat,
char *missingVal1, char *missingVal2, char *missingVal3)

157

SPSS Input/Output DLL

Description

This function reports the missing values of a short string variable. The value of
*missingFormat will be in the range 0–3, indicating the number of missing values. The
appropriate number of missing values is copied to the buffersmissingVal1,
missingVal2, andmissingVal3. The lengths of the null-terminated missing value strings
will be the length of the short string variable in question. Since the latter can be at most
8 characters long, 9-character buffers are adequate for any short string variable.

Parameter Description

handle Handle to the data file

varName Variable name

missingFormat Pointer to missing value format code

missingVal1 Buffer for first missing value

missingVal2 Buffer for second missing value

missingVal3 Buffer for third missing value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_STR_EXP The variable is numeric

SPSS_SHORTSTR_EXP The variable is a long string (length > 8)

158

Appendix A

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
int type; /* missing format type */
int numV; /* number of variables */
int *typesV; /* variable types */
char **namesV; /* variable names */
char cMiss1[9]; /* first missing value */
char cMiss2[9]; /* second missing value*/
char cMiss3[9]; /* third missing value */

...
error = spssOpenRead("bank.sav", &fH);
...
/* Print missing value information for all short string ** variables

*/
error = spssGetVarNames(fH, &numV, &namesV, &typesV);
if (error == SPSS_OK)
{

int i;
for (i = 0; i < numV; ++i)
{

if (0 < typesV[i] && typesV[i] <= 8)
{

/* Short string variable */
error = spssGetVarCMissingValues

(fH, namesV[i], &type, cMiss1, cMiss2, cMiss3);
if (error != SPSS_OK) continue; /* Ignore error */
printf("Variable %s, missing values: ", namesV[i]);
switch (type)
{
case 0:

printf("None\n");
break;

case 1:
printf("%s\n", cMiss1);
break;

case 2:
printf("%s, %s\n", cMiss1, cMiss2);
break;

case 3:
printf("%s, %s, %s\n", cMiss1, cMiss2, cMiss3);
break;

default: /* Should never come here */
printf("Invalid format code\n");
break;

}
}

}
spssFreeVarNames(namesV, typesV, numV);

}
}

See alsospssGetVarNMissingValues.

159

SPSS Input/Output DLL

spssGetVarColumnWidth

int spssGetVarColumnWidth (int handle, const char *varName, int *columnWidth)

Description

This function reports the value of the column width attribute of a variable. A value of
zero is special and means that the SPSS Data Editor, which is the primary user of this
attribute, will set an appropriate width using its own algorithm.

Parameter Description

handle Handle to the data file.

varName Variable name.

columnWidth Pointer to column width. Non-negative.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarCValueLabel

int spssGetVarCValueLabel

(int handle, const char *varName, const char *value, char *label)

160

Appendix A

Description

This function gets the value label for a given value of a short string variable. The label
is copied as a null-terminated string into the bufferlabel, whose size must be at least 61
to hold the longest possible value label (60 characters plus the null terminator). To get
value labels more than 60 characters long, use thespssGetVarCValueLabelLong

function.

Parameter Description

handle Handle to the data file

varName Variable name

value Short string value for which the label is wanted

label Label for the value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_NO_LABEL There is no label for the given value (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_STR_EXP The variable is numeric

SPSS_SHORTSTR_EXP The variable is a long string (length > 8)

SPSS_EXC_STRVALUE The value is longer than the length of the variable

161

SPSS Input/Output DLL

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
char vLab[61]; /* label for the value */
...
error = spssOpenRead("myfile.sav", &fH);
...
/* Get and print the label for value "IL" of variable STATE */
error = spssGetVarCValueLabel(fH, "STATE", "IL", vLab);
if (error == SPSS_OK)
printf("Value label for variable STATE, value \"IL\": %s\n", vLab);

...
}

spssGetVarCValueLabelLong

int spssGetVarCValueLabelLong
(int handle, const char *varName, const char *value, char *labelBuff,
int lenBuff, int *lenLabel)

Description

This function returns a null-terminated value label corresponding to one value of a
specified variable whose values are short strings. The function permits the client to
limit the number of bytes (including the null terminator) stored and returns the number
of data bytes (excluding the null terminator) actually stored. If an error is detected, the
label is returned as a null string, and the length is returned as 0.

Parameter Description

handle Handle to the data file

varname Null-terminated variable name

value Null-terminated value for which label is requested

labelBuff Returned as null-terminated label

lenBuff Overall size oflabelBuff in bytes

lenLabel Returned as bytes stored excluding terminator

162

Appendix A

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_NO_LABEL The given value has no label (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_STR_EXP The specified variable has numeric values

SPSS_SHORTSTR_EXP The specified variable has long string values

SPSS_EXC_STRVALUE The specified value is longer than the variable’s
data

spssGetVarCValueLabels

int spssGetVarCValueLabels

(int handle, const char *varName, char ***values, char ***labels, int *numLabels)

Description

This function gets the set of labeled values and associated labels for a short string
variable. The number of values is returned as*numLabels. Values are stored into an
array of*numLabels pointers, each pointing to achar string containing a null-
terminated value, and*values is set to point to the first element of the array. Each value
string is as long as the variable. The corresponding labels are structured as an array of
*numLabels pointers, each pointing to achar string containing a null-terminated label,
and*labels is set to point to the first element of the array.

The two arrays and the value and label strings are allocated on the heap. When they
are no longer needed,spssFreeVarCValueLabels should be called to free the memory.

163

SPSS Input/Output DLL

Parameter Description

handle Handle to the data file

varName Variable name

values Pointer to array of pointers to values

labels Pointer to array of pointers to labels

numLabels Pointer to number of values or labels

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_STR_EXP The variable is numeric

SPSS_SHORTSTR_EXP The variable is a long string (length > 8)

SPSS_NO_MEMORY Insufficient memory

164

Appendix A

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
int numL; /* number of values or labels */
char **cValuesL; /* values */
char **labelsL; /* labels */
...
error = spssOpenRead("myfile.sav", &fH);
...
/* Get and print value labels for short string variable STATE */
error = spssGetVarCValueLabels(fH, "STATE",

&cValuesL, &labelsL, &numL);
if (error == SPSS_OK)
{

int i;
printf("Value labels for STATE\n");
for (i = 0; i < numL; ++i)
{

printf("Value: %s, Label: %s\n", cValuesL[i], labelsL[i]);
}
/* Free the values & labels */
spssFreeVarCValueLabels(cValuesL, labelsL, numL);

}
}

See alsospssFreeVarCValueLabels.

spssGetVarHandle

int spssGetVarHandle (int handle, const char *varName, double *varHandle)

Description

This function returns a handle for a variable, which can then be used to read or write
(depending on how the file was opened) values of the variable. Ifhandle is associated
with an output file, the dictionary must be written withspssCommitHeader before
variable handles can be obtained viaspssGetVarHandle.

Parameter Description

handle Handle to the data file.

varName Variable name.

varHandle Pointer to handle for the variable. Note that the variablehandle is
a double, and notint or long.

165

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten withspssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NO_MEMORY No memory available

Example

SeespssGetValueChar.

spssGetVariableSets

int spssGetVariableSets (int handle, char **varSets)

Description

This function reports the variable sets information in the data file. Variable sets
information is stored in a null-terminated string and a pointer to the string is returned
in *varSets. Since the variable sets string is allocated on the heap, the caller should free
it by calling spssFreeVariableSets when it is no longer needed.

Parameter Description

handle Handle to the data file

varSets Pointer to pointer to variable sets string

166

Appendix A

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_VARSETS There is no variable sets information in the file
(warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_NO_MEMORY Insufficient memory

Example

#include <stdio.h>
#include <stdlib.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
char *vSets; /* ptr to variable sets info.*/
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get & print variable sets information. */
error = spssGetVariableSets(fH, &vSets);
if (error == SPSS_NO_VARSETS)
{

printf("No variable sets information in file.\n");
}
else if (error == SPSS_OK)
{

/* In real life, we would format the variable sets
** information better
*/
printf("Variable sets:\n%s", vSets);
/* Remember to free variable set string */
spssFreeVariableSets(vSets);

}
...

}

See alsospssFreeVariableSets.

167

SPSS Input/Output DLL

spssGetVarInfo

int spssGetVarInfo (int handle, int iVar, char *varName, int *varType)

Description

This function gets the name and type of one of the variables present in a data file. It
serves the same purpose asspssGetVarNames but returns the information one variable
at a time and, therefore, can be passed to a Visual Basic program. The storage to receive
the variable name must be at least 9 bytes in length because the name is returned as a
null-terminated string. The type code is an integer in the range 0–255, 0 indicating a
numeric variable and a positive value indicating a string variable of that size.

Parameter Description

handle Handle to the data file

iVar Zero-origin variable number

varName Returned as the variable name

varType Returned as the variable type

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_FILE The data file contains no variables

SPSS_NO_MEMORY Insufficient memory

SPSS_VAR_NOTFOUND ParameteriVar is invalid

168

Appendix A

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
long count; /* number of variables */
int *typeV; /* variable type */
char *nameV; /* variable name */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get number of variables */
error = spssGetNumberofVariables(fH, &count);
if (error == SPSS_OK)
/* Get & print variable names and types */
{

int i;
for (i = 0; i < count; ++i)
{error = spssGetVarInfo(fH, i, nameV, typeV);

if (error == SPSS_OK)
printf("Variable name: %s, type: %d\n", nameV, typeV);

}
}

}

spssGetVarLabel

int spssGetVarLabel (int handle, const char *varName, char *varLabel)

Description

This function copies the label of variablevarName into the buffer pointed to by
varLabel. Since the variable label is at most 120 characters long and null-terminated,
the size of the buffer should be at least 121. To get labels more than 120 characters
long, use thespssGetVarLabelLong function.

Parameter Description

handle Handle to the data file

varName Variable name

varLabel Variable label buffer

169

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABEL The variable does not have a label (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
char vLabel[121]; /* variable label */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get and print the label of the variable AGE */
error = spssGetVarLabel(fH, "AGE", vLabel);
if (error == SPSS_OK)

printf("Variable label of AGE: %s\n", vLabel);
...

}

spssGetVarLabelLong

int spssGetVarLabelLong (int handle, const char *varName, char *labelBuff,
int lenBuff, int *lenLabel)

Description

This function returns the null-terminated label associated with the specified variable
but restricts the number of bytes (including the null terminator) returned tolenBuff

bytes. This length can be conveniently specified assizeof(labelBuff). The function also
returns the number of data bytes (this time excluding the null terminator) stored. If an
error is detected, the label is returned as a null string, and the length is returned as 0.

170

Appendix A

Parameter Description

handle Handle to the data file

varName Null-terminated variable name

labelBuff Buffer to receive the null-terminated label

lenBuff Overall size oflabelBuff in bytes

lenLabel Returned as bytes stored excluding terminator

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABEL The variable does not have a label (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarMeasureLevel

int spssGetVarMeasureLevel (int handle, const char *varName, int *measureLevel)

Description

This function reports the value of the measurement level attribute of a variable.

Parameter Description

handle Handle to the data file.

varName Variable name.

measureLevel Pointer to measurement level. Set toSPSS_MLVL_NOM,
SPSS_MLVL_ORD, or SPSS_MLVL_RAT, for nominal, ordinal,
and scale (ratio), respectively.

171

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarNMissingValues

int spssGetVarNMissingValues

(int handle, const char *varName, int *missingFormat,
double *missingVal1, double *missingVal2, double *missingVal3)

Description

This function reports the missing values of a numeric variable. The value of
*missingFormat determines the interpretation of*missingVal1 , *missingVal2, and
*missingVal3. If *missingFormat isSPSS_MISS_RANGE, *missingVal1 and*missingVal2
represent the upper and lower limits, respectively, of the range, and*missingVal3 is not
used. If*missingFormat isSPSS_MISS_RANGEANDVAL, *missingval1 and*missingVal2
represent the range and*missingVal3 is the discrete missing value. If*missingFormat is
neither of the above, it will be in the range 0–3, indicating the number of discrete missing
values present. (The macrosSPSS_NO_MISSVAL, SPSS_ONE_MISSVAL,
SPSS_TWO_MISSVAL, andSPSS_THREE_MISSVAL may be used as synonyms for 0–3.)

172

Appendix A

Parameter Description

handle Handle to the data file

varName Variable name

missingFormat Pointer to missing value format code

missingVal1 Pointer to first missing value

missingVal2 Pointer to second missing value

missingVal3 Pointer to third missing value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

173

SPSS Input/Output DLL

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
int type; /* missing format type */
int numV; /* number of variables */
int *typesV; /* variable types */
char **namesV; /* variable names */
double nMiss1; /* first missing value */
double nMiss2; /* second missing value*/
double nMiss3; /* third missing value */

...

error = spssOpenRead("bank.sav", &fH);
...
/*Print missing value information for all numeric variables */
error = spssGetVarNames(fH, &numV, &namesV, &typesV);
if (error == SPSS_OK)
{

int i;
for (i = 0; i < numV; ++i)
{

if (typesV[i] == 0)
{

/* Numeric variable */
error = spssGetVarNMissingValues

(fH, namesV[i], &type, &nMiss1, &nMiss2, &nMiss3);
if (error != SPSS_OK) continue; /* Ignore error */
printf("Variable %s, missing values: ", namesV[i]);
switch (type)
{
case SPSS_MISS_RANGE:

printf("%e through %e\n", nMiss1, nMiss2);
break;

case SPSS_MISS_RANGEANDVAL:
printf("%e through %e, %e\n", nMiss1, nMiss2, nMiss3);
break;

case 0:
printf("None\n");
break;

case 1:
printf("%e\n", nMiss1);
break;

case 2:
printf("%e, %e\n", nMiss1, nMiss2);
break;

case 3:
printf("%e, %e, %e\n", nMiss1, nMiss2, nMiss3);
break;

default: /* Should never come here */
printf("Invalid format code\n");
break;

}
}

}
spssFreeVarNames(namesV, typesV, numV);

}
}

See alsospssGetVarCMissingValues.

174

Appendix A

spssGetVarNValueLabel

int spssGetVarNValueLabel
(int handle, const char *varName, double value, char *label)

Description

This function gets the value label for a given value of a numeric variable. The label is
copied as a null-terminated string into the bufferlabel, whose size must be at least 61
to hold the longest possible value label (60 characters) plus the terminator. To get value
labels more than 60 characters long, use thespssGetVarNValueLabelLong function.

Parameter Description

handle Handle to the data file

varName Variable name

value Numeric value for which the label is wanted

label Label for the value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_NO_LABEL There is no label for the given value (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

175

SPSS Input/Output DLL

Example
#include "spssdio.h"

void func()
{

int fH; /* file handle */
int error; /* error code */
char vLab[61]; /* label for the value */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get and print the label for value 0.0 of variable SEX */
error = spssGetVarNValueLabel(fH, "SEX", 0.0, vLab);
if (error == SPSS_OK)

printf("Value label for variable SEX, value 0.0: %s\n", vLab);
...

}

spssGetVarNValueLabelLong

int spssGetVarNValueLabelLong
(int handle, const char *varName, double value, char *labelBuff, int lenBuff, int *lenLabel)

Description

This function returns a null-terminated value label corresponding to one value of a
specified numeric variable. It permits the client to limit the number of bytes (including
the null terminator) stored and returns the number of data bytes (excluding the null
terminator) actually stored. If an error is detected, the label is returned as a null string,
and the length is returned as 0.

Parameter Description

handle Handle to the data file

varName Null-terminated variable name

value Value for which label is requested

labelBuff Returned as null-terminated label

lenBuff Overall size oflabelBuff in bytes

lenLabel Returned as bytes stored excluding terminator

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

176

Appendix A

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_NO_LABEL The given value has no label (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The specified variable has string values

spssGetVarNValueLabels

int spssGetVarNValueLabels

(int handle, const char *varName, double **values, char ***labels, int *numLabels)

Description

This function gets the set of labeled values and associated labels for a numeric variable.
The number of values is returned as*numLabels. Values are stored into an array of
*numLabels double elements, and*values is set to point to the first element of the array.
The corresponding labels are structured as an array of*numLabels pointers, each
pointing to achar string containing a null-terminated label, and*labels is set to point to
the first element of the array.

The two arrays and the label strings are allocated on the heap. When they are no
longer needed,spssFreeVarNValueLabels should be called to free the memory.

Parameter Description

handle Handle to the data file

varName Variable name

values Pointer to array of double values

labels Pointer to array of pointers to labels

numLabels Pointer to number of values or labels

177

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

SPSS_NO_MEMORY Insufficient memory

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
int numL; /* number of values or labels */
double *nValuesL; /* values */
char **labelsL; /* labels */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get and print value labels for numeric variable SEX */
error = spssGetVarNValueLabels(fH, "SEX",

&nValuesL, &labelsL, &numL);
if (error == SPSS_OK)
{

int i;
printf("Value labels for SEX\n");
for (i = 0; i < numL; ++i)
{

printf("Value: %g, Label: %s\n", valuesL[i], labelsL[i]);
}
/* Free the values & labels */
spssFreeVarNValueLabels(nValuesL, labelsL, numL);

}
}

See alsospssFreeVarNValueLabels.

178

Appendix A

spssGetVarNames

int spssGetVarNames (int handle, int *numVars, char ***varNames, int **varTypes)

Description

This function gets the names and types of all the variables present in a data file. The
number of variables is returned as*numVars. Variable names are structured as an array
of *numVars pointers, each pointing to achar string containing a variable name, and
*varNames is set to point to the first element of the array. Variable types are stored into
a corresponding array of*numVars in elements, and*varTypes is set to point to the first
element of the array. The type code is an integer in the range 0–255, 0 indicating a
numeric variable and a positive value indicating a string variable of that size.

The two arrays and the variable name strings are allocated on the heap. When they
are no longer needed,spssFreeVarNames should be called to free the memory.

Parameter Description

handle Handle to the data file

numVars Pointer to number of variables

varNames Pointer to array of pointers to variable names

varTypes Pointer to array of variable types

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_FILE The data file contains no variables

SPSS_NO_MEMORY Insufficient memory

179

SPSS Input/Output DLL

Example
#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
int numV; /* number of variables */
int *typesV; /* variable types */
char **namesV; /* variable names */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Get & print variable names and types */
error = spssGetVarNames(fH, &numV, &namesV, &typesV);
if (error == SPSS_OK)
{

int i;
for (i = 0; i < numV; ++i)
{

printf("Variable name: %s, type: %d\n", namesV[i], typesV[i]);
}
/* Free the variable names & types */
spssFreeVarNames(namesV, typesV, numV);

}
}

See alsospssFreeVarNames.

spssGetVarPrintFormat

int spssGetVarPrintFormat

(int handle, const char *varName, int *printType, int *printDec, int *printWid)

Description

This function reports the print format of a variable. Format type, number of decimal
places, and field width are returned as*printType, *printDec, and*printWid, respectively.

Parameter Description

handle Handle to the data file

varName Variable name

printType Pointer to print format type code (filespssdio.h defines macros of
the formSPSS_FMT_... for all valid format type codes)

printDec Pointer to number of digits after the decimal

printWid Pointer to print format width

180

Appendix A

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
int type; /* print format type */
int dec; /* digits after decimal */
int wid; /* print format width */

error = spssOpenRead("bank.sav", &fH);
...
/* Get & print the print format of variable AGE */
error = spssGetVarPrintFormat(fH, "AGE", &type, &dec, &wid);
if (error == SPSS_OK)
{

printf("Variable AGE, format code %d, width.dec %d.%d\n",
type, wid, dec);

}
}

spssGetVarWriteFormat

int spssGetVarWriteFormat

(int handle, const char *varName, int *writeType, int *writeDec, int *writeWid)

Description

This function reports the write format of a variable. Format type, number of decimal
places, and field width are returned as*writeType, *writeDec, and*writeWid,
respectively.

181

SPSS Input/Output DLL

Parameter Description

handle Handle to the data file

varName Variable name

writeType Pointer to write format type code (filespssdio.h defines macros of
the formSPSS_FMT_... for all valid format type codes)

writeDec Pointer to number of digits after the decimal

writeWid Pointer to write format width

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
int type; /* write format type */
int dec; /* digits after decimal */
int wid; /* write format width */

error = spssOpenRead("bank.sav", &fH);
...
/* Get & print the write format of variable AGE */
error = spssGetVarWriteFormat(fH, "AGE", &type, &dec, &wid);
if (error == SPSS_OK)
{

printf("Variable AGE, format code %d, width.dec %d.%d\n",
type, wid, dec);

}
}

182

Appendix A

spssHostSysmisVal

void spssHostSysmisVal(double *missVal)

Description

This function accesses the same information asspssSysmisVal but returns the
information via a parameter rather than on the stack as the function result. The problem
being addressed is that not all languages return doubles from functions in the same
fashion.

Parameter Description

missval Returned as the system missing value

Returns

The function always succeeds, and there is no return code.

See alsospssSysmisVal.

spssLowHighVal

void spssLowHighVal (double *lowest, double *highest)

Description

This function returns the “lowest” and “highest” values used for numeric missing value
ranges on the host system. It may be called at any time.

Parameter Description

lowest Pointer to “lowest” value

highest Pointer to “highest” value

Returns

None

183

SPSS Input/Output DLL

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
double lowest, highest;
...
error = spssOpenWrite("data.sav", &fH);
...
/* Create numeric variable SALARY and set range "lowest"
** through 0 as missing
*/
error = spssSetVarName(fH, "SALARY", SPSS_NUMERIC);
if (error == SPSS_OK)
{

spssLowHighVal(&lowest, &highest);
/* Last arg. is a placeholder since we are defining a range
** only
*/
error = spssSetVarNMissingValues(fH, "SALARY",

SPSS_MISS_RANGE,lowest, 0.0, 0.0);
...

}
}

spssOpenAppend

int spssOpenAppend (const char *fileName, int *handle)

Description

This function opens an SPSS data file for appending cases and returns a handle that
should be used for subsequent operations on the file.

Parameter Description

fileName Name of the file

handle Pointer to handle to be returned

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

184

Appendix A

Error Code Description

SPSS_OK No error

SPSS_FITAB_FULL File table full (too many open SPSS data files)

SPSS_FILE_OERROR Error opening file

SPSS_NO_MEMORY Insufficient memory

SPSS_FILE_RERROR Error reading file

SPSS_INVALID_FILE File is not a valid SPSS data file

SPSS_NO_TYPE2 File is not a valid SPSS data file (no type 2 record)

SPSS_NO_TYPE999 File is not a valid SPSS data file (missing type 999
record)

SPSS_INCOMPAT_APPEND File created on an incompatible system.

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenAppend("bank.sav", &fH);
if (error == 0)
{

/* fH is a valid handle; process and */
...
/* close file */
error = spssCloseAppend(fH);
...

}
else
{

/* Handle error*/
...

}
}

See alsospssCloseAppend.

185

SPSS Input/Output DLL

spssOpenRead

int spssOpenRead (const char *fileName, int *handle)

Description

This function opens an SPSS data file for reading and returns a handle that should be
used for subsequent operations on the file.

Parameter Description

fileName Name of the file

handle Pointer to handle to be returned

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_FITAB_FULL File table full (too many open SPSS data files)

SPSS_FILE_OERROR Error opening file

SPSS_NO_MEMORY Insufficient memory

SPSS_FILE_RERROR Error reading file

SPSS_INVALID_FILE File is not a valid SPSS data file

SPSS_NO_TYPE2 File is not a valid SPSS data file (no type 2 record)

SPSS_NO_TYPE999 File is not a valid SPSS data file (missing type 999
record)

186

Appendix A

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenRead("bank.sav", &fH);
if (error == 0)
{

/* fH is a valid handle; process and */
...
/* close file */
error = spssCloseRead(fH);
...

}
else
{

/* Handle error*/
...

}
}

See alsospssCloseRead.

spssOpenWrite

int spssOpenWrite (const char *filename, int *handle)

Description

This function opens a file in preparation for creating a new SPSS data file and returns
a handle that should be used for subsequent operations on the file.

Parameter Description

filename Name of the data file

handle Pointer to handle to be returned

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

187

SPSS Input/Output DLL

Error Code Description

SPSS_OK No error

SPSS_FITAB_FULL File table full (too many open SPSS data files)

SPSS_FILE_OERROR Error opening file

SPSS_NO_MEMORY Insufficient memory

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("dat.sav", &fH);
if (error == 0)
{

/* fH is a valid handle; process and */
...
/* close file */
error = spssCloseWrite(fH);
...

}
else
{

/* Handle error*/
...

}
}

See alsospssCloseWrite.

spssOpenWriteCopy

int spssOpenWriteCopy (const char *fileName, const char *dictFileName, int *handle)

Description

This function opens a file in preparation for creating a new SPSS data file and
initializes its dictionary from that of an existing SPSS data file. It is useful when you
want to modify the dictionary or data of an existing file or replace all of its data. The
typical sequence of operations is to callspssOpenWriteCopy (newFileName,
oldFileName, ...) to open a new file initialized with a copy of the old file’s dictionary,
thenspssOpenRead (oldFileName, ...) to open the old file to access its data.

188

Appendix A

Parameter Description

fileName Name of the new file

dictFileName Name of existing file

handle Pointer to handle to be returned

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_FITAB_FULL File table full (too many open SPSS data files)

SPSS_FILE_OERROR Error opening new file for output

SPSS_NO_MEMORY Insufficient memory

SPSS_FILE_RERROR Error reading existing file

SPSS_INVALID_FILE File is not a valid SPSS data file

SPSS_NO_TYPE2 File is not a valid SPSS data file (no type 2 record)

SPSS_NO_TYPE999 File is not a valid SPSS data file (missing type 999
record)

spssQueryType7

int spssQueryType7(const int handle, const int subType, int *bFound)

Description

This function can be used to determine whether a file opened for reading or append
contains a specific “type 7” record. The following type 7 subtypes might be of interest:

Subtype 3. Release information

Subtype 4. Floating point constants including the system missing value

Subtype 5. Variable set definitions

189

SPSS Input/Output DLL

Subtype 6. Date variable information

Subtype 7. Multiple response set definitions

Subtype 8. Data Entry for Windows (DEW) information

Subtype 10. TextSmart information

Subtype 11. Measurement level, column width, and alignment for each variable

Parameter Description

handle Handle to the data file

subtype Specific subtype record

bFound Returned set if the specified subtype was encountered

Returns

The result of the query is returned in parameterbfound—TRUE if the record subtype
was encountered when reading the file’s dictionary;FALSE otherwise.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE The file was opened for writing

SPSS_INVALID_7SUBTYPE Parameter subtype not between 1 and
MAX7SUBTYPE

spssReadCaseRecord

int spssReadCaseRecord (int handle)

Description

This function reads the next case from a data file into internal buffers. Values of
individual variables for the case may then be obtained by calling the
spssGetValueNumeric andspssGetValueChar procedures.

190

Appendix A

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_FILE_END End of the file reached; no more cases (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE File is open for writing, not reading

SPSS_FILE_RERROR Error reading file

Example

SeespssGetValueChar.

spssSeekNextCase

int spssSeekNextCase(const int handle, const long caseNumber)

Description

This function sets the file pointer of an input file so that the next data case read will be
the one specified via thecaseNumber parameter. A zero-origin scheme is used. That
is, the first case is number 0. The next case can be read by calling either
spssWholeCaseIn or spssReadCaseRecord. If the specified case is greater than or equal
to the number of cases in the file, the call to the input function will return
SPSS_FILE_END.

Parameter Description

handle Handle to the data file

caseNumber Zero-origin case number

191

SPSS Input/Output DLL

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE The file is open for writing, not reading

SPSS_NO_MEMORY Insufficient memory

SPSS_FILE_RERROR Error reading the file

SPSS_INVALID_FILE The file is not a valid SPSS data file

See alsospssWholeCaseIn, spssReadCaseRecord.

spssSetCaseWeightVar

int spssSetCaseWeightVar (int handle, const char *varName)

Description

This function defines variablevarName as the case weight variable for the data file
specified by thehandle.

Parameter Description

handle Handle to the data file

varName The name of the case weight variable

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

192

Appendix A

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

SPSS_NO_MEMORY Insufficient memory

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("data.sav", &fH);
...
/* Define variables */
error = spssSetVarName(fH, "NUMCHILD", SPSS_NUMERIC);
if (error == SPSS_OK)

error = spssSetVarName(fH, "TOYPREF", SPSS_NUMERIC);
...
/* Set NUMCHILD as case weight */
error = spssSetCaseWeightVar(fH, "NUMCHILD");
if (error != SPSS_OK)
{

/* Handle error */
}

}

spssSetCompression

int spssSetCompression (int handle, int compSwitch)

193

SPSS Input/Output DLL

Description

This function sets the compression attribute of an SPSS data file. Compression is set
on if compSwitch is one and off if it is zero. If this function is not called, the output file
will be uncompressed by default.

Parameter Description

handle Handle to the data file

compSwitch Compression switch

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_COMPSW Invalid compression switch (other than 0 or 1)

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("data.sav", &fH);
...
/* Set data compression on */
error = spssSetCompression(fH, 1);
...

}

194

Appendix A

spssSetDateVariables

int spssSetDateVariables (int handle, int numofElements, const long *dateInfo)

Description

This function sets the Trends date variable information. The array atdateInfo is
assumed to havenumofElements elements that correspond to the data array portion of
record 7, subtype 3. Its first six elements comprise the “fixed” information, followed
by a sequence of one or more three-element groups. Since very little validity checking
is done on the input array, this function should be used with caution and is
recommended only for copying Trends information from one file to another.

Parameter Description

handle Handle to the data file

numofElements Size of the arraydateInfo

dateInfo Array containing date variables information

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_DATEINFO The date variable information is invalid

SPSS_NO_MEMORY Insufficient memory

195

SPSS Input/Output DLL

Example
#include <stdlib.h>
#include "spssdio.h"
void func()
{

int fHIn, fHOut; /* input & output file handles */
int error; /* error code */
long *dateInfo; /* pointer to date variable info. */
int nElements; /* number of elements in date info. array */
...
/* Open one file for reading and one for writing. */
error = spssOpenRead("bank.sav", &fHIn);
...
error = spssOpenWrite("bankcopy.sav", &fHOut);
...
/* Get the list of variables in input file;
** define variables in output file
*/
...
/* Get date variable information from input file and copy
** it to output file
*/
error = spssGetDateVariables(fHIn, &nElements, &dateInfo);
if (error == SPSS_OK)
{

error = spssSetDateVariables(fHOut, nElements, dateInfo);
...
free(dateInfo);

}
...

}

See alsospssGetDateVariables.

spssSetDEWFirst

int spssSetDEWFirst (const int handle, const void *pData, const long nBytes)

Description

DEW information (file information which is private to the SPSS Data Entry product)
can be delivered to the I/O DLL in whatever segments are convenient for the client. The
spssSetDEWFirst function is called to deliver the first such segment, and subsequent
segments are delivered by callingspssSetDEWNext as many times as necessary.

Parameter Description

handle Handle to the data file

pData Pointer to the data to be written

nBytes Number of bytes to write

196

Appendix A

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_EMPTY_DEW Zero bytes to be written (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_READ_MODE The file is not open for writing

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_MEMORY Insufficient memory for control blocks

SPSS_FILE_BADTEMP Cannot open or write to temporary file

See alsospssSetDEWNext.

spssSetDEWNext

int spssSetDEWNext (const int handle, const void *pData, const long nBytes)

Description

The DEW information (file information that is private to the SPSS Data Entry product)
can be delivered to the I/O DLL in whatever segments are convenient for the client. The
spssSetDEWFirst function is called to deliver the first such segment, and subsequent
segments are delivered by callingspssSetDEWNext as many times as necessary.

Parameter Description

handle Handle to the data file

pData Pointer to the data to be written

nBytes Number of bytes to write

197

SPSS Input/Output DLL

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_DEW_NOFIRST spssSetDEWFirst was never called

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_READ_MODE The file is not open for writing

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_MEMORY Insufficient memory for control blocks

SPSS_FILE_BADTEMP Cannot open or write to temporary file

See alsospssSetDEWFirst.

spssSetIdString

int spssSetIdString (int handle, const char *id)

Description

This function sets the file label of the output SPSS data file associated withhandle to
the given stringid.

Parameter Description

handle Handle to the data file.

id File label. The length of the string should not exceed 64 characters.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

198

Appendix A

Error Code Description

SPSS_OK No error

SPSS_EXC_LEN64 Label length exceeds 64; truncated and used
(warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

Example
include "spssdio.h"

void func()
{

int fH; /* file handle */
int error; /* error code */
char id[] = "This is a file label.";
...
error = spssOpenWrite("data.sav", &fH);
...
error = spssSetIdString(fH, id);
if (error == SPSS_OK)
{

/* The label of the data file is now the string
** "This is a file label."
*/
...

}
}

spssSetMultRespDefs

int spssSetMultRespDefs(const int handle, const char *mrespDefs)

Description

This function is used to write multiple response definitions to the file. The definitions
consist of a single null-terminated ASCII string which is similar to that containing the
variable set definitions.

Parameter Description

handle Handle to the data file

mrespDefs ASCII string containing definitions

199

SPSS Input/Output DLL

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_EMPTY_MULTRESP The string contains no definitions (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_MEMORY Insufficient memory to store the definitions

spssSetTextInfo

int spssSetTextInfo (int handle, const char *textInfo)

Description

This function sets the text data from the null-terminated string intextInfo. If the string
is longer than 255 characters, only the first 255 are (quietly) used. IftextInfo contains
the empty string, existing text data, if any, are deleted.

Parameter Description

handle Handle to the data file

textInfo Text data

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

200

Appendix A

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_MEMORY Insufficient memory

spssSetValueChar

int spssSetValueChar (int handle, double varHandle, const char *value)

Description

This function sets the value of a string variable for the current case. The current case is
not written out to the data file untilspssCommitCaseRecord is called.

Parameter Description

handle Handle to the data file

varHandle Handle to the variable

value Value of the variable as a null-terminated string. The length of the
string (ignoring trailing blanks, if any) should be less than or equal
to the length of the variable.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten withspssCommitHeader

SPSS_STR_EXP Variable associated with the handle is numeric

SPSS_EXC_STRVALUE The value is longer than the length of the variable

201

SPSS Input/Output DLL

Example

SeespssSetValueNumeric.

See alsospssCommitCaseRecord.

spssSetValueNumeric

int spssSetValueNumeric (int handle, double varHandle, double value)

Description

This function sets the value of a numeric variable for the current case. The current case
is not written out to the data file untilspssCommitCaseRecord is called.

Parameter Description

handle Handle to the data file

varHandle Handle to the variable

value Value of the variable

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten withspssCommitHeader

SPSS_NUME_EXP Variable associated with the handle is not numeric

202

Appendix A

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
double ageH, titleH; /* variable handles */
double age; /* value of AGE */
...
error = spssOpenWrite("data.sav", &fH);
...
/* Create numeric variable AGE and long string variable
** TITLE
*/
error = spssSetVarName(fH, "AGE", SPSS_NUMERIC);
...
error = spssSetVarName(fH, TITLE, SPSS_STRING(20));
...
/* Done with dictionary definition; commit dictionary */
error = spssCommitHeader(fH);
...
/* Get variable handles */
error = spssGetVarHandle(fH, "AGE", &ageH);
...
error = spssGet VarHandle(fH, "TITLE", &titleH);
...
/* Construct & write cases, with AGE set to 20, 21, ... 46
** and TITLE set to "Super salesman"
*/
for (age = 20.0; age <= 46.0; ++age)
{

error = spssSetValueNumeric(fH, ageH, age);
...
error = spssSetValueChar(fH, titleH, "Super salesman")
...
error = spssCommitCaseRecord(fH);
...

}
error = spssCloseWrite(fH);
...

}

See alsospssConvertDate, spssConvertTime, spssCommitCaseRecord.

spssSetVarAlignment

int spssSetVarAlignment (int handle, const char *varName, int alignment)

Description

This function sets the value of the alignment attribute of a variable.

203

SPSS Input/Output DLL

Parameter Description

handle Handle to the data file.

varName Variable name.

alignment Alignment. Must be one ofSPSS_ALIGN_LEFT,
SPSS_ALIGN_RIGHT, or SPSS_ALIGN_CENTER. If not a legal
value, alignment is set to a type-appropriate default.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssSetVarCMissingValues

int spssSetVarCMissingValues

(int handle, const char *varName, int missingFormat,
const char *missingVal1, const char *missingVal2, const char *missingVal3)

Description

This function sets missing values for a short string variable. The argument
missingFormat must be set to a value in the range 0–3 to indicate the number of missing
values supplied. When fewer than three missing values are to be defined, the redundant
arguments must still be present, although their values are not inspected. For example,
if missingFormat is 2,missingVal3 is unused. The supplied missing values must be null-
terminated and not longer than the length of the variable unless the excess length is

204

Appendix A

made up of blanks, which are ignored. If the missing value is shorter than the length of
the variable, trailing blanks are assumed.

Parameter Description

handle The handle to the data file

varName Variable name

missingFormat Missing format code

missingVal1 First missing value

missingVal2 Second missing value

missingVal3 Third missing value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_STR_EXP The variable is numeric

SPSS_SHORTSTR_EXP The variable is a long string (length > 8)

SPSS_INVALID_MISSFOR Invalid missing values specification (missingFormat
is not in the range 0–3)

SPSS_EXC_STRVALUE A missing value is longer than the length of the
variable

SPSS_NO_MEMORY Insufficient memory

205

SPSS Input/Output DLL

Example

#include <stddef.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("data.sav", &fH);
...
/* Create short string variable TITLE and define values
** consisting of blanks or periods only as missing
*/
error = spssSetVarName(fH, "TITLE", SPSS_STRING(6));
if (error == SPSS_OK)
{

/* Last arg. is a placeholder since we are defining only two
** missing values
*/
error = spssSetVarCMissingValues(fH, "TITLE", 2,

"......", " ", NULL);
...

}
}

spssSetVarColumnWidth

int spssSetVarColumnWidth (int handle, const char *varName, int columnWidth)

Description

This function sets the value of the column width attribute of a variable. A value of zero
is special and means that the SPSS Data Editor, which is the primary user of this
attribute, is to set an appropriate width using its own algorithm.

Parameter Description

handle Handle to the data file.

varName Variable name.

columnWidth Column width. If negative, a value of zero is (quietly) used instead.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

206

Appendix A

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssSetVarCValueLabel

int spssSetVarCValueLabel

(int handle, const char *varName, const char *value, const char *label)

Description

This function changes or adds a value label for the specified value of a short string
variable. The label should be a null-terminated string not exceeding 60 characters in
length.

Parameter Description

handle Handle to the data file

varName Variable name

value Value to be labeled

label Label

207

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_EXC_LEN60 Label length exceeds 60; truncated and used
(warning).

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader.

SPSS_INVALID_VARNAME Variable name is invalid.

SPSS_VAR_NOTFOUND A variable with the given name does not exist.

SPSS_STR_EXP The variable is numeric.

SPSS_SHORTSTR_EXP The variable is a long string (length > 8).

SPSS_EXC_STRVALUE The value (*value) is longer than the length of the
variable.

SPSS_NO_MEMORY Insufficient memory.

SPSS_INTERNAL_VLABS Internal data structures of the DLL are invalid. This
signals an error in the DLL.

Example
#include "spssdio.h"

void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("data.sav", &fH);
...
/* Create short string variable TITLE and label the value
** consisting of all blanks as "Did not want title"
*/
error = spssSetVarName(fH, "TITLE", SPSS_STRING(6));
if (error == SPSS_OK)
{

error = spssSetVarCValueLabel(fH, "TITLE", " ",
"Did not want title");

}
}

See alsospssSetVarCValueLabels.

208

Appendix A

spssSetVarCValueLabels

int spssSetVarCValueLabels

(int handle, const char **varNames, int numVars,

const char **values, const char **labels, int numLabels)

Description

This function defines a set of value labels for one or more short string variables. Value
labels already defined for any of the given variable(s), if any, are discarded (if the labels
are shared with other variables, they remain associated).

Parameter Description

handle Handle to the data file

varNames Array of pointers to variable names

numVars Number of variables

values Array of pointers to values

labels Array of pointers to labels

numLabels Number of labels or values)

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_EXC_LEN60 At least one label’s length exceeded 60; truncated
and used (warning).

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader.

SPSS_NO_VARIABLES Number of variables (numVars) is zero or negative.

209

SPSS Input/Output DLL

SPSS_NO_LABELS Number of labels (numLabels) is zero or negative.

SPSS_INVALID_VARNAME At least one variable name is invalid.

SPSS_VAR_NOTFOUND At least one of the variables does not exist.

SPSS_STR_EXP At least one of the variables is numeric.

SPSS_SHORTSTR_EXP At least one of the variables is a long string
(length < 8).

SPSS_EXC_STRVALUE At least one value is longer than the length of the
variable.

SPSS_DUP_VALUE The list of values contains duplicates.

SPSS_NO_MEMORY Insufficient memory.

SPSS_INTERNAL_VLABS Internal data structures of the DLL are invalid. This
signals an error in the DLL.

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
static char *vNames[2]= /* variable names */

{ "TITLE", "OLDTITLE" };
static char *vValues[3] = /* values to be labeled */

{ " ", "techst", "consul" };
static char *vLabels[3] = /* corresponding labels */

{ "Unknown", "Member of tech. staff", "Outside consultant" };
...
error = spssOpenWrite("data.sav", &fH);
...
/* Define two short string variables TITLE & OLDTITLE and a
** set of shared value labels
*/
error = spssSetVarName(fH, vNames[0], SPSS_STRING(6));
if (error == SPSS_OK)

error = spssSetVarName(fH, vNames[1], SPSS_STRING(6));
if (error == SPSS_OK)
{

error =
spssSetVarCValueLabels(fH, vNames, 2, vValues, vLabels, 3);

...
}

}

See alsospssSetVarCValueLabel.

210

Appendix A

spssSetVarLabel

int spssSetVarLabel (int handle, const char *varName, const char *varLabel)

Description

This function sets the label of a variable.

Parameter Description

handle Handle to the data file.

varName Variable name.

varLabel Variable label. The length of the string should not exceed 120 char-
acters. IfvarLabel is the empty string, the existing label, if any, is
deleted.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_EXC_LEN120 Variable label’s length exceeds 120; truncated and
used (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NO_MEMORY Insufficient memory

211

SPSS Input/Output DLL

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("data.sav", &fH);
/* Do the file operations here */
...
/* Define string variable NAME of length 8 */
error = spssSetVarName(fH, "NAME", SPSS_STRING(8));
...
/* Label the variable */
error =

spssSetVarLabel(fH, "NAME", "Name of respondent");
...

}

spssSetVarMeasureLevel

int spssSetVarMeasureLevel (int handle, const char *varName, int measureLevel)

Description

This function sets the value of the measurement level attribute of a variable.

Parameter Description

handle Handle to the data file.

varName Variable name.

measureLevel Measurement level. Must be one ofSPSS_MLVL_NOM,
SPSS_MLVL_ORD, SPSS_MLVL_RAT, or SPSS_MLVL_UNK for
nominal, ordinal, scale (ratio), and unknown, respectively. If
SPSS_MLVL_UNK, measurement level is set to a type-appropriate
default.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

212

Appendix A

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_INVALID_MEASURELEVEL measureLevel is not in the legal range, or it is
SPSS_MLVL_RAT and the variable is a string
variable

spssSetVarNMissingValues

int spssSetVarNMissingValues

(int handle, const char *varName, int missingFormat,
double missingVal1, double missingVal2, double missingVal3)

Description

This function sets missing values for a numeric variable. The interpretation of the
argumentsmissingVal1, missingVal2, andmissingVal3 depends on the value of
missingFormat. If missingFormat is set toSPSS_MISS_RANGE, missingVal1 and
missingVal2 are taken as the upper and lower limits, respectively, of the range, and
missingVal3 is ignored. IfmissingFormat is SPSS_MISS_RANGEANDVAL, missingval1
andmissingVal2 are taken as limits of the range andmissingVal3 is taken as the discrete
missing value. IfmissingFormat is neither of the above, it must be in the range 0–3,
indicating the number of discrete missing values present. For example, if
missingFormat is 2, missingVal1 andmissingVal2 are taken as two discrete missing
values andmissingVal3 is ignored. (The macrosSPSS_NO_MISSVAL,
SPSS_ONE_MISSVAL, SPSS_TWO_MISSVAL, andSPSS_THREE_MISSVAL may be
used as synonyms for 0–3.)

213

SPSS Input/Output DLL

Parameter Description

handle Handle to the data file

varName Variable name

missingFormat Missing values format code

missingVal1 First missing value

missingVal2 Second missing value

missingVal3 Third missing value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

SPSS_INVALID_MISSFOR Invalid missing values specification (missingFormat
is invalid or the lower limit of range is greater than the
upper limit)

SPSS_NO_MEMORY Insufficient memory

214

Appendix A

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("data.sav", &fH);
...
/* Create numeric variable BUYCODE and set range 1-9 as
** missing
*/
error = spssSetVarName(fH, "BUYCODE", SPSS_NUMERIC);
if (error == SPSS_OK)
{

/* Last arg. is a placeholder since we are defining a range
** only
*/
error =

spssSetVarNMissingValues(fH, "BUYCODE", SPSS_MISS_RANGE,
1.0, 9.0, 0.0);

...
}

}

See alsospssSetVarCMissingValues.

spssSetVarNValueLabel

int spssSetVarNValueLabel

(int handle, const char *varName, double value, const char *label)

Description

This function changes or adds a value label for the specified value of a numeric
variable. The label should be a null-terminated string not exceeding 60 characters in
length.

Parameter Description

handle Handle to the data file

varName Variable name

value Value to be labeled

label Label

215

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_EXC_LEN60 Label length exceeds 60; truncated and used
(warning).

SPSS_INVALID_HANDLE File handle not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader.

SPSS_INVALID_VARNAME Variable name is invalid.

SPSS_VAR_NOTFOUND A variable with the given name does not exist.

SPSS_NUME_EXP The variable is not numeric.

SPSS_NO_MEMORY Insufficient memory.

SPSS_INTERNAL_VLABS Internal data structures of the DLL are invalid. This
signals an error in the DLL.

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("data.sav", &fH);
...
/* Create numeric variable BUYCODE and label value 0.0 as
** "Unknown"
*/
error = spssSetVarName(fH, "BUYCODE", SPSS_NUMERIC);
if (error == SPSS_OK)
{

error =
spssSetVarNValueLabel(fH, "BUYCODE", 0.0, "Unknown");

...
}

}

See alsospssSetVarNValueLabels.

216

Appendix A

spssSetVarNValueLabels

int spssSetVarNValueLabels

(int handle, const char **varNames, int numVars,
const double *values, const char **labels, int numLabels)

Description

This function defines a set of value labels for one or more numeric variables. Value
labels already defined for any of the given variable(s), if any, are discarded (if the labels
are shared with other variables, they remain associated with those variables).

Parameter Description

handle Handle to the data file

varNames Array of pointers to variable names

numVars Number of variables

values Array of values

labels Array of pointers to labels

numLabels Number of labels or values

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_EXC_LEN60 At least one label’s length exceeded 60; truncated
and used (warning).

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader.

SPSS_NO_VARIABLES Number of variables (numVars) is zero or negative.

217

SPSS Input/Output DLL

SPSS_NO_LABELS Number of labels (numLabels) is zero or negative.

SPSS_INVALID_VARNAME At least one variable name is invalid.

SPSS_VAR_NOTFOUND At least one of the variables does not exist.

SPSS_NUME_EXP At least one of the variables is not numeric.

SPSS_DUP_VALUE The list of values contains duplicates.

SPSS_NO_MEMORY Insufficient memory.

SPSS_INTERNAL_VLABS Internal data structures of the DLL are invalid. This
signals an error in the DLL.

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
static char *vNames[2]= /* variable names */

{ "AGE", "AGECHILD" };
static double vValues[3] = /* values to be labeled */

{ -2.0, -1.0, 0.0 };
static char *vLabels[3] = /* corresponding labels */

{ "Unknown", "Not applicable", "Under 1" };
...
error = spssOpenWrite("data.sav", &fH);
...
/* Define two numeric variables AGE & AGECHILD and a set of
** shared value labels
*/
error = spssSetVarName(fH, vNames[0], SPSS_NUMERIC);
if (error == SPSS_OK)

error = spssSetVarName(fH, vNames[1], SPSS_NUMERIC);
if (error == SPSS_OK)
{

error =
spssSetVarNValueLabels(fH, vNames, 2, vValues, vLabels, 3);

...
}

}

See alsospssSetVarNValueLabel.

spssSetVarName

int spssSetVarName (int handle, const char *varName, int varLength)

218

Appendix A

Description

This function creates a new variable namedvarName, which will be either numeric or
string based onvarLength. If the latter is zero, a numeric variable with a default format
of F8.2 will be created; if it is greater than 0 and less than or equal to 255, a string
variable with lengthvarLength will be created; any other value will be rejected as
invalid. For better readability, the macrosSPSS_NUMERIC andSPSS_STRING(length)

may be used as values forvarLength.

Parameter Description

handle Handle to the data file

varName Variable name

varLength Type and size of the variable

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARTYPE Invalid length code (varLength is negative or
exceeds 255)

SPSS_INVALID_VARNAME Variable name is invalid

SPSS_DUP_VAR There is already a variable with the same name

SPSS_NO_MEMORY Insufficient memory

219

SPSS Input/Output DLL

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("data.sav", &fH);
...

/* Create numeric variable AGE and string variable NAME */
error = spssSetVarName(fH, "AGE", SPSS_NUMERIC);
if (error == SPSS_OK)

error = spssSetVarName(fH, "NAME", SPSS_STRING(20));
...

}

spssSetVarPrintFormat

int spssSetVarPrintFormat

(int handle, const char *varName, int printType, int printDec, int printWid)

Description

This function sets the print format of a variable.

Parameter Description

handle Handle to the data file

varName Variable name

printType Print format type code (filespssdio.h defines macros of the form
SPSS_FMT_... for all valid format type codes)

printDec Number of digits after the decimal

printWid Print format width

220

Appendix A

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_INVALID_PRFOR The print format specification is invalid or is
incompatible with the variable type

SPSS_NO_MEMORY Insufficient memory

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("data.sav", &fH);
/* Define numeric variable TIMESTMP */
error = spssSetVarName(fH, "TIMESTMP", SPSS_NUMERIC);
...
/* Set the print format of TIMESTMP to DATETIME28.4 */
error = spssSetVarPrintFormat(fH, "TIMESTMP",

SPSS_FMT_DATE_TIME, 4, 28);
...

}

See alsospssSetVarWriteFormat.

221

SPSS Input/Output DLL

spssSetVarWriteFormat

int spssSetVarWriteFormat

(int handle, const char *varName, int writeType, int writeDec, int writeWid)

Description

This function sets the write format of a variable.

Parameter Description

handle Handle to the data file

varName Variable name

writeType Write format type code (filespssdio.h defines macros of the form
SPSS_FMT_... for all valid format type codes)

writeDec Number of digits after the decimal

writeWid Write format width

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_INVALID_WRFOR The write format specification is invalid or is
incompatible with the variable type

SPSS_NO_MEMORY Insufficient memory

222

Appendix A

Example

#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
...
error = spssOpenWrite("data.sav", &fH);
/* Define string variable ODDCHARS of length 7 */
error = spssSetVarName(fH, "ODDCHARS", SPSS_STRING(7));
...
/* Set the write format of ODDCHARS to AHEX14 */
error =
spssSetVarWriteFormat(fH, "ODDCHARS", SPSS_FMT_AHEX, 0, 14);
...

}

spssSetVariableSets

int spssSetVariableSets (int handle, const char *varSets)

Description

This function sets the variable sets information in the data file. The information must
be provided in the form of a null-terminated string. No validity checks are performed
on the supplied string beyond ensuring that its length is not 0. Any existing variable
sets information is discarded.

Parameter Description

handle Handle to the data file

varSets Variable sets information

223

SPSS Input/Output DLL

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_EMPTY_VARSETS The variable sets information is empty (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_NO_MEMORY Insufficient memory

Example

#include <stdlib.h>
#include "spssdio.h"
void func()
{

int fHIn, fHOut; /* input & output file handles */
int error; /* error code */
char *vSets; /* ptr to variable sets info. */
...
/* Open one file for reading and one for writing. */
error = spssOpenRead("bank.sav", &fHIn);
...
error = spssOpenWrite("bankcopy.sav", &fHOut);
...
/* Copy variable sets information from input file to output
** file
*/
error = spssGetVariableSets(fHIn, &vSets);
if (error == SPSS_OK)
{

error = spssSetVariableSets(fHOut, vSets);
/* Handle errors and remember to free variable set string */
...
free(vSets);

}
else if (error != SPSS_EMPTY_VARSETS)
{
/* Error getting variable sets information from input file */

...
}
...

}

224

Appendix A

spssSysmisVal

double spssSysmisVal (void)

Description

This function returns the SPSS system-missing value for the host system. It may be
called at any time.

Parameter Description

None

Returns

The SPSS system-missing value for the host system.

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

double sysmis; /* system missing value */
...
/* Get and print the system missing value */
sysmis = spssSysmisVal();
printf("System missing value: %e\n");
...

}

spssWholeCaseIn

int spssWholeCaseIn (int handle, char *caseRec)

Description

This function reads a case from a data file into a case buffer provided by the user. The
required size of the buffer may be obtained by callingspssGetCaseSize. This is a fairly
low-level function whose use should not be mixed with calls tospssReadCaseRecord

using the same file handle because both procedures read a new case from the data file.

225

SPSS Input/Output DLL

Parameter Description

handle Handle to the data file

caseRec Buffer to contain the case

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_FILE_END End of the file reached; no more cases (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE File is open for writing, not reading

SPSS_FILE_RERROR Error reading file

Example

#include <stdlib.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
int caseSize; /* size of a case */
char *cRec; /* pointer to case record */
...
error = spssOpenRead("bank.sav", &fH);
...
/* Find out the size of the case and allocate memory for the
** case record.
*/
error = spssGetCaseSize(fH, &caseSize);
...
cRec = (char *) malloc(caseSize);
...
error = spssWholeCaseIn(fH, cRec);
...
/* Buffer cRec now contains the first case in the data file.
** It is up to us to make sense out of it.
*/
...

}

See alsospssGetCaseSize, spssWholeCaseOut.

226

Appendix A

spssWholeCaseOut

int spssWholeCaseOut

(int handle, const char *caseRec)

Description

This function writes a case assembled by the caller to a data file. The case is assumed
to have been constructed correctly in the buffercaseRec, and its validity is not
checked. This is a fairly low-level function whose use should not be mixed with calls
to spssCommitCaseRecord using the same file handle because both procedures write a
new case to the data file.

Parameter Description

handle Handle to the data file

caseRec Case record to be written to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten withspssCommitHeader

SPSS_FILE_WERROR File write error

227

SPSS Input/Output DLL

Example

#include <string.h>
#include "spssdio.h"
void func()
{

int fH; /* file handle */
int error; /* error code */
int caseSize; /* size of a case */
char caseRec[16]; /* case record */
double age; /* value of AGE */
...
error = spssOpenWrite("data.sav", &fH);
...
/* Define two variables */
error = spssSetVarName(fH, "NAME", SPSS_STRING(7));
...
error = spssSetVarName(fH, "AGE", SPSS_NUMERIC);
...
/* Done with dictionary definition; commit dictionary */
error = spssCommitHeader(fH);
...
/* Please note that code beyond this requires knowledge of
** SPSS data file formats, and it very easy to produce
** garbage.
*/
/* Find out the size of the case and make sure it is 16 as
** we assume it to be
*/
error = spssGetCaseSize(fH, &caseSize);
...
/* Construct one case with NAME "KNIEVEL" and AGE 50.
** Write out the case and close file.
*/
memcpy(caseRec, "KNIEVEL ", 8); /* Padding to 8 */
age = 50.0;
memcpy(caseRec+8, &age, 8); /* Assuming sizeof double is 8 */
error = spssWholeCaseOut(fH, caseRec);
...
error = spssCloseWrite(fH);
...

}

See alsospssGetCaseSize, spssWholeCaseIn.

228

Appendix

B
SPSS Third-Party API for
SPSS for Windows

Introduction

This document is intended for developers who are writing applications to be
integrated with SPSS for Windows. It discusses the specific registry entries you’ll
need to use and strategies for modifying your setup program to automatically register
add-ins to SPSS.

The SPSS third-party API permits applications, scripts, and syntax files (add-ins)
to be added to the menu bar of the SPSS product. These add-ins are stored in the
system registry and are persistent from session to session. Beginning with SPSS 7.5,
users can add menu and toolbar items interactively. These entries are stored in the
registry using the same technique. You’ll need to familiarizeyourself with the
Windows registry in order to use the information below effectively. Good background
articles are available with Microsoft Visual C++ (32-bit editions) and the Microsoft
Developer Support Network. Add-ins are registered on the following path:
HKEY_CURRENT_USER\Software\SPSS\SPSS for Windows\10.0\OtherApps.
The version number is expected to change with each major release.

Contents of the Registry

When SPSS is launched, it will look for the presence of the key
HKEY_CURRENT_USER\Software\SPSS\SPSS for Windows\10.0\OtherApps. If
found, SPSS will iterate over its subkeys, each of which represents a menu add-in. In
Figure B-1 below, there are two add-in keys,Excel charting-0 andNotepad0. The

229

SPSS Third-Party API fo r SPSS for Windows

names of these keys are not in themselves significant as long as they’re unique within
OtherApps.

Figure B-1
Windows Registry Editor with Notepad and Excel added to SPSS menus

The specific details of how the add-ins are configured are located under the add-in keys
and are keys, not values. Table B-1 summarizes the available keys. All keys use only
the default name, and their values are stored in the registry as strings. Notice the right
pane of Figure B-1. Theab icon indicates a string value, and(Default) indicates the
default (null) name. Make sure that when you’ve populated the registry, the values all
have this representation in the registry.

230

Appendix B

A description of each configuration detail follows.

Launch

The application name and verb within the registration database. The name and verb are
validated when SPSS attempts to launch the third-party application. The maximum
length of the value is 255 characters. SPSS will not update the menus if it is longer. For
example:

MenuType

Indicates which SPSS window(s) the menu item will be added to. The specification is
a list of values separated by commas. Valid entries are 0, 2, 3, or 4. Zero is the Data
Editor, 2 is the Viewer, 3 is the Syntax Editor, and 4 is the Script menu. The example
below would place the menu item in the Data Editor and syntax windows.

Table B-1
Add-in configuration details

Key Description

ActionID How the application is to be launched

DeleteFile Whether the data file is to be deleted when SPSS terminates

Launch The command line to launch the program

Menu Name of menu and its place in the menu hierarchy

MenuEnable Whether always enabled or only if data are loaded into SPSS

MenuPos The position of the menu item on the containing pop-up menu

MenuSeparator Whether a menu separator is placed above menu item

MenuType Which SPSS windows are affected

Minimize Whether or not the application is launched minimized and whether
or not SPSS is minimized when the application is launched

ReadFile The type of data file passed to the application, if any

SingleSeat Whether the application is disabled in client/server mode.

TBOnly Whether the application is to be accessible only from the toolbar

231

SPSS Third-Party API fo r SPSS for Windows

For example:

MenuPos

Indicates the position of the menu item within the individual menupopups. This can
be a series of numbers if the user has created new menus as well as menu items. In the
example below, a new menu, My Applications, was added to the Utilities menu, and
three submenus, Corel tools, Productivity tools, and Games, were added under it. The
Games menu has four menu items under it. TheMenuPos for the Whizzy Whirly game
is as follows:

Zero indicates that Whizzy Whirly is the first item on its menu; 2 indicates that Games
is the third item on its menu, and 6 indicates that My Applications is the seventh menu
item on its menu (counting the separator).

Figure B-2
SPSS menus displaying Whizzy Whirly menu item

232

Appendix B

ActionID

Indicates the type of add-in. SPSS supports the running of external applications,
internal scripts (typically,*.sbs files), or SPSS syntax files (typically,*.sps files).
External applications are usually*.exe files but can be invoked from any valid
command line. Therefore, you can usec:\MSOffice\Excel\Excel.exe, with your sales
data loaded fromc:\mydata\sales1.xls; or you can simply usec:\mydata\sales1.xls to
launch Excel with your sales data loaded. A good rule of thumb is that if it works on
the Start > Run menu, it will work here. You may need embedded quotes around long
filenames.

This key is required by SPSS to identify the type of application to which the
LAUNCH keyword applies. Valid values are 0 (application), 1 (script), and 2 (syntax).
For example:

SingleSeat

This value is 1 if the add-in works only in single-seat (non-client/server) mode. A value
of 0 or a missing key indicates that the application will be available in both single-seat
and client/server modes. For example:

TBOnly

This value is 1 if the add-in is to be accessible via the toolbar only (and not via the menu
bar). A value of 0 indicates that the application can appear on SPSS menus as well as
on toolbars. For example:

233

SPSS Third-Party API fo r SPSS for Windows

Menu

Describes the menu text and the location of the add-in on the menu hierarchy. This
entry is in the formatMenuName > MenuItem whereMenuName is one of the symbols
defined below:

Table B-2
Symbols and menu names

Symbol Menu

$FILE File

$NEW File > New

$DATABASE File > Open Database

$EDIT Edit

$VIEW View

$DATA Data

$MERGE Data > Merge Files

$ORTHO Data > Orthogonal Design

$TRANS Transform

$RECODE Transform > Recode

$ANALYZE Analyze

$REPORTS Analyze > Reports

$DESCSTATS Analyze > Descriptive Statistics

$TABLE Analyze > Custom Tables

$MEAN Analyze > Compare Means

$ANOVA Analyze > General Linear Model

$CORR Analyze > Correlate

$REGR Analyze > Regression

$LOGLIN Analyze > Loglinear

$CLASS Analyze > Classify

$REDUCT Analyze > Data Reduction

$SCALE Analyze > Scale

$NPAR Analyze > Nonparametric Tests

$TIMESERIES Analyze > Time Series

$SURV Analyze > Survival

$MULTRESP Analyze > Multiple Response

$GRAPH Graphs

$GRAFTIME Graphs > Time Series

234

Appendix B

Defining these symbolically makes for easier localization of programs that add menu
items to the SPSS menus. For example, a value of$ANALYZE > My Statistic places a menu
item called My statistic on the Analyze menu. Add an ampersand (&) to indicate the
accelerator;$ANALYZE > My Sta&tistic would make Alt-t the accelerator for the add-in.

If you’re defining your own menus, you’ll need to use actual strings rather than the
symbols defined above. For example,&My applications>My Sta&tistic would create a
menu, My Application (with “m” as the accelerator) and a menu item of My Statistic
below it. It is the responsibility of the third-party application to specify a unique menu
item and mnemonic when the registry is updated. (To do so, the vendor must check all
other third-party sections within the registration database.) The menu and its items are
validated when SPSS is launched.

If a single token is specified, it is assumed to be a menu item at the bottom of the
Utilities menu.

If the entire tree already exists and aMenuPos entry does not exist, the item will be
placed at the bottom of the last node.

$UTIL Utilities

$HELP Help

$CHART Graphics Editor Chart

$SERIES Graphics Editor Series

$ATTRIBUTES Graphics Editor Attributes

$SELECT Edit > Select

$OUTLINE Edit > Outline

$INSERT Insert

$FORMAT Format

Table B-2 (Continued)
Symbols and menu names

235

SPSS Third-Party API fo r SPSS for Windows

MenuSeparator

Whether or not a separator line is inserted before the menu item. Valid entries are 0 and 1.
Zero does not insert a separator; 1 does insert a separator. Defaults to 0. For example:

Minimize

Whether or not the application is launched minimized and whether or not SPSS is
minimized when the application is launched. Valid entries are 0, 1, and 2. Zero
minimizes neither; 1 minimizes SPSS; 2 minimizes the third-party application.
Defaults to 0. For example:

MenuEnable

When the menu item is enabled. Valid entries are 0 and 1. Zero enables the menu item
at all times; 1 enables the menu item only while data is present in SPSS. Defaults to 0.
For example:

ReadFile

The type of data file passed to the application. The following table describes the types.
For example:

236

Appendix B

This value defaults to 1.

DeleteFile

Whether the file used to pass data to the application is to be deleted when SPSS
terminates. If this key has the value 0, the file will not be deleted. If it has the value 1
(the default), the file will be deleted. For example:

Status of Files

When SPSS creates a file, it stores it in the Windows temporary directory. SPSS will
then delete that file when it exits unless theDeleteFile key has a value of 0. When the
third-party application creates a file for SPSS to read, it should follow the SPSS
“temporary” naming conventions so that SPSS will delete the file when it exits.

Table B-3
File types

Spec Type ReadFile

0 DDE Third-party application will initiate a DDE conversation to read
the working data file.

1 No file No file is written to disk when the third-party application is
launched.

2 SPSS data file

SPSS writes the working data file to disk (in the Windows
temporary directory). If the menu item is enabled but no working
data file exists, the third-party application is launched without a
filename.

3 Excel version 2
Spreadsheet type files are written with field names. If the menu
item is enabled but no working data file exists, the third-party
application is launched without a filename.

4 SYLK

5 123 Release 3

6 Tab-Delimited

7 dBase IV

237

Appendix

C
Coding Conventions

This appendix describes the coding conventions used by SPSS in developing the
examples included with the developer’s tools. Following a consistent set of guidelines
makes your code easier to manage, particularly if more than one person will be
working on it. These conventions are included here to aid to interpreting the examples
and to use as guidelines for developing your own code.

Following are some general guidelines:

� Declare all variables before using them. (In Visual Basic, theOption Explicit
statement can be used to force explicit declaration of all variables.)

� Be consistent in naming variables and procedures. Use standard prefixes to
indicate the data type and scope of variables.

� Be generous with comments.

� Indent nested blocks of code to show logic and increase readability.

Variable and Procedure Names

Be consistent when naming variables and procedures. Names should be written in
mixed case and should be descriptive. Variable names should use standard prefixes to
indicate data type and scope, as shown in Table C-1 and Table C-2. Procedure names
should begin with verbs, such asInitNameArray or CloseDialog.

238

Appendix C

Table C-1
Variable subtypes and suggested prefixes

For frequently used or long terms, use abbreviations to help keep name length
reasonable, but be consistent. For example, randomly switching between “Cnt” and
“Count” can lead to confusion.

Variable Scope

The scope of variables varies depending on where they are declared. For example,
variables declared within a procedure are available only within that procedure.
Variables declared at the beginning of a module, above any procedure, are available to
all procedures in the module.

Always define variables with the smallest scope possible. However, in cases in
which it is necessary to give variables scope beyond a single procedure, you can add a
one-letter scope prefix to the variable name, as shown in Table C-2.

Table C-2
Variable scope and suggested prefixes.

Subtype Prefix Example

Boolean bln blnFound
Byte byt bytRasterData
Date(Time) dtm dtmStart
Double dbl dblTolerance
Error err errOrderNum
Integer int intQuantity
Long lng lngDistance
Object obj objCurrent
Single sng sngAverage
String str strFirstName

Scope Prefix Example

Procedure-level None dblVelocity
Module-level m mdblVelocity

239

Coding Conventions

Object Variables

When referencing SPSS objects, use the variable names shown in Table C-3.

Table C-3
SPSS objects and suggested variable names.

Naming Constants

Constant names should be in upper case, with underscores (_) between words. For
example:

USER_LIST_MAX
NEW_LINE

Object Type Variable Name

SPSS Application ISpssApp objSpssApp
SPSS Options ISpssOptions objSpssOptions
Documents ISpssDocuments objDocuments
Data Document ISpssDataDoc objDataDoc
Syntax Document ISpssSyntaxDoc objSyntaxDoc
Viewer Document ISpssOutputDoc objOutputDoc
Output Items Collection ISpssItems objOutputItems
Output Item ISpssItem objOutputItem
Chart ISpssChart objSpssChart
Text ISpssRtf objSpssText
Print Options ISpssPrintOptions objPrintOptions
PivotTable PivotTable objPivotTable
Footnotes ISpssFootnotes objFootnotes
DataCells ISpssDataCells objDataCells
LayerLabels ISpssLayerLabels objLayerLabels
(Column)Labels ISpssLabels objColumnLabels
(Row)Labels ISpssLabels objRowLabels
PivotMgr ISpssPivotMgr objPivotMgr
Dimension ISpssDimension objDimension

240

Appendix C

Commenting Code

It is a good idea to begin each procedure with a comment that describes what the
procedure does. This description should not provide the implementation details
because these often change over time, resulting inunnecessary comment maintenance
or, worse yet, erroneous comments. (Use the code itself and any necessary inline
comments to describe the implementation.)

� Arguments passed to a procedure should be described when their purpose is not
obvious and when the procedure expects the arguments to be within a specific
range. Function return values and other variables that are changed by the
procedure, especially through reference arguments, should also be described at the
beginning of each procedure.

� It may be helpful to provide an overview of each step in a procedure. You need not
comment every line; rather, summarize blocks of code that accomplish meaningful
steps in the overall procedure.

� Comments should be contained within the procedure to which they pertain.

Code Structure

Organizing code into procedures makes it easier to manage and reuse pieces of code.
As a general rule, procedures are organized by task in the sample programs and can be
broken up into those that get the objects to be manipulated (for example, a pivot table
that is selected in the Viewer) and those that actually perform the manipulations on the
objects of interest (for example, making theTotalsbold).

This structure is intended to make it easy to understand each procedure and to reuse
pieces of code. For example, a procedure that gets the first selected pivot table in the
Viewer could be used by a number of programs or scripts that manipulate the table in
different ways.

241

I n d e x

autoscripts,74

command syntax
creating by copying,18
creating by pasting,16
running procedures with,14

description in a script,73

developer’s tools
automation overview,5
compatibility with future versions of SPSS,6
customization overview,5
distributing your application,6
integration overview,5
technical support,6

distributed mode
overview,25

example programs
additional sources for,85
analyze data in Excel,99
application object,39
chart object,59
correlation matrix diagonal,92
data document object,48
display reports in Word,98
display, print, and export reports,96
file information object,45
getting versus creating the application object,41
I/O DLL, 105
interactive graph object,62
make wide pivot tables narrow,95
manipulate output items,89
manipulate pivot tables,91

multiple instances of SPSS,87
options object,42
output document object,52
output item index,88
output items collection object,54
pivot table object,57
Production Facility code,101
run syntax code,103
scripting,86
shorten percentage labels,93
syntax document object,50
text object,65
Visual Basic version,85

example scripts
adding an autoscript,78
additional sources for,85
edit all pivot tables,86
modifying a starter script,76
writing an original script,81

Excel
example program to analyze data,99

global scripts,74

I/O DLL
16-bit versus 32-bit,115
Borland C++,116
coding with,115
direct access input,112
example programs,105, 117
introduction to,2
Visual Basic,116

I/O DLL procedures
spssAddMultRespDefC,118
spssAddMultRespDefN,119

242

Index

spssCloseAppend,121
spssCloseRead,122
spssCloseWrite,123
spssCommitCaseRecord,124
spssCommitHeader,125
spssConvertDate,126
spssConvertSPSSDate,128
spssConvertSPSSTime,130
spssConvertTime,130
spssCopyDocuments,131
spssFreeDateVariables,132
spssFreeMultRespDefs,133
spssFreeVarCValueLabels,133
spssFreeVariableSets,134
spssFreeVarNames,135
spssFreeVarNValueLabels,135
spssGetCaseSize,136
spssGetCaseWeightVar,137
spssGetCompression,138
spssGetDateVariables,139
spssGetDEWFirst,141
spssGetDewInfo,142
spssGetDEWNext,143
spssGetEstimatedNofCases,144
spssGetIdString,145
spssGetMultRespDefs,146
spssGetNumberofCases,147
spssGetNumberofVariables,148
spssGetReleaseInfo,149
spssGetSystemString,150
spssGetTextInfo,151
spssGetTimeStamp,152
spssGetValueChar,153
spssGetValueNumeric,155
spssGetVarAlignment,156
spssGetVarCMissingValues,156
spssGetVarColumnWidth,159
spssGetVarCValueLabel,159
spssGetVarCValueLabelLong,161
spssGetVarCValueLabels,162
spssGetVarHandle,164
spssGetVariableSets,165
spssGetVarInfo,167
spssGetVarLabel,168
spssGetVarLabelLong,169
spssGetVarMeasureLevel,170
spssGetVarNames,178

spssGetVarNMissingValues,171
spssGetVarNValueLabel,174
spssGetVarNValueLabelLong,175
spssGetVarNValueLabels,176
spssGetVarPrintFormat,179
spssGetVarWriteFormat,180
spssHostSysmisVal,182
spssLowHighVal,182
spssOpenAppend,183
spssOpenRead,185
spssOpenWrite,186
spssOpenWriteCopy,187
spssQueryType7,188
spssReadCaseRecord,189
spssSeekNextCase,190
spssSetCaseWeightVar,191
spssSetCompression,192
spssSetDateVariables,194
spssSetDEWFirst,195
spssSetDEWNext,196
spssSetIdString,197
spssSetMultRespDefs,198
spssSetTextInfo,199
spssSetValueChar,200
spssSetValueNumeric,201
spssSetVarAlignment,202
spssSetVarCMissingValues,203
spssSetVarColumnWidth,205
spssSetVarCValueLabel,206
spssSetVarCValueLabels,208
spssSetVariableSets,222
spssSetVarLabel,210
spssSetVarMeasureLevel,211
spssSetVarName,217
spssSetVarNMissingValues,212
spssSetVarNValueLabel,214
spssSetVarNValueLabels,216
spssSetVarPrintFormat,219
spssSetVarWriteFormat,221
spssSysmisVal,224
spssWholeCaseIn,224
spssWholeCaseOut,226

I/O DLL, SPSS data files and
DOCUMENT command,114
string variables,112
system-missing values,113
value labels,113

243

Index

variable alignment,114
variable column widths,114
variable labels,113
variable measurement levels,114
variable naming conventions,112

I/O DLL, using to
append cases to an SPSS data file,109
copy a dictionary,109
read an SPSS data file,110
write an SPSS data file,108

introduction to
I/O DLL, 2
MACRO and MATRIX procedures,3
OLE Automation,2
Production Facility,3
scripting facility,3
third-party API,2

MACRO and MATRIX procedures
documentation,4
introduction to,3

Microsoft Excel
example program to analyze data,99

Microsoft Word
example program to display reports,98

object browsers
accessing online Help from,70

object model,32

OLE Automation,34
application object code example,39
application object, getting versus creating,41
chart object code example,59
compared to scripting,72
data document object code example,48
defined,28
example application to display, print, and export

reports,96
example of deciding what objects to use in an

application,32
example program to analyze Excel data,99
example program to display reports in Word,98
example program to get output item index,88

example program to manage multiple instances of
SPSS,87

example program to manipulate correlation ma-
trix diagonal,92

example program to manipulate output items,89
example program to manipulate pivot tables,91
example program to narrow pivot tables,95
example program to shorten percentage labels,93
file information object code example,45
high-level properties and methods,68
interactive graph object code example,62
introduction to,2
object model hierarchy,32
objects and corresponding user interfaces,31
options object code example,42
output document object code example,52
output items collection object code example,54
pivot table object code example,57
syntax document object code example,50
tasks that can be automated,30
terminology,29
text object code example,65

pasting syntax to a script window,73

Production Facility
additional documentation,4
code,101
introduction to,3
overview,24
running procedures,16

run syntax
code,103

running procedures
with command syntax,14
with dialog boxes,14
with Production Facility,16

running scripts,76

SCRIPT command syntax,73

script window,73

244

Index

scripting
adding a description to a script,73
additional examples,85
autoscript, step-by-step example,78
compared to OLE Automation,72
defined,72
example to edit pivot tables,86
modifying a starter script, step-by-step example,

76
overview,22
pasting syntax to a script window,73
running scripts,76
SCRIPT command syntax,73
script window features,73
steps to use,75
types of scripts,74
writing a script, step-by-step example,81

scripting facility
additional documentation,4
introduction to,3

scripts
autoscripts, defined,74
global, defined,74
starter, defined,74

SPSS
creating command syntax by copying,18
creating command syntax by pasting,16
distributed mode,25
getting data,11
launching,10
MACRO and MATRIX procedures,3
output item types,9
overview of running an analysis,10
Production Facility,24
running procedures from dialog boxes,14
running procedures with command syntax,14
scripting facility, overview,22
selecting and running a procedure,12
type libraries,69
viewing and manipulating results,19
window types,8

SPSS object model,32

starter scripts,74

steps to write application code,34

syntax
creating by copying,18
creating by pasting,16
running procedures with,14

technical support,6
third-party API

introduction to,2
menu names,233
Windows registry,228

tutorials,4

Visual Basic
example application to display, print, and export

reports,96
example of detecting that the application object is

already running,41
example program to get output item index,88
example program to manage multiple instances of

SPSS,87
example program to manipulate correlation ma-

trix diagonal,92
example program to manipulate output items,89
example program to manipulate pivot tables,91
example program to narrow pivot tables,95
example program to shorten percentage labels,93
Production Facility code,101
run syntax code,103

Word
example program to display reports,98

	1 Overview
	Developer’s Tools
	Documentation Map
	Using the SPSS Developer’s Tools
	More Information
	Statement of Compatibility
	Technical Support

	Distributing Your Finished Application

	2 Programmer’s Introduction to SPSS for Windows
	Working with Windows and Output
	Window Types
	Output Items

	Overview of Running an Analysis
	Launching SPSS
	Getting Data into SPSS
	Selecting and Running a Procedure
	Viewing and Manipulating Results

	Working with the SPSS Scripting Facility
	Working with the SPSS Production Facility
	Working in Distributed Mode

	3 OLE Automation Quickstart
	What Is OLE Automation?
	OLE Terminology
	Using Objects, Properties, and Methods

	How Do I Use OLE Automation with SPSS?
	Deciding What You Want Your Application to Do
	Writing Application Code

	SPSS Objects, Methods, and Properties
	Objects
	Properties and Methods

	SPSS Type Libraries
	Object Browser and Online Help

	4 Scripting Quickstart
	What Is the SPSS Scripting Facility?
	Scripting versus OLE Automation Applications
	Script Window Features
	Types of Scripts

	How Do I Use Scripting?
	Deciding What You Want Your Script to Do
	Writing Script Code
	Running Scripts

	Examples
	Modifying a Starter Script
	Adding an Autoscript
	Writing an Original Script

	5 Additional Examples
	Edit All Pivot Tables
	Manage Multiple Instances of SPSS
	Output Item Index
	Manipulate Output Items
	Pivot Table Manipulation
	Correlation Matrix Diagonal
	Shorten Percentage Labels in Crosstabulation
	Make Wide Pivot Tables Narrow
	Display, Print, and Export Reports
	Display a Report in Microsoft Word
	Analyze Excel Data and Display Reports in Excel
	Production Facility Code
	Run Syntax Code
	Display Dictionary Information

	A SPSS Input/Output DLL
	Using the I/O DLL
	Writing an SPSS Data File
	Copying a Dictionary
	Appending Cases to a Existing SPSS Data File
	Reading an SPSS Data File
	Direct Access Input

	Working with SPSS Data Files
	Variable Names and String Values
	Accessing Variable and Value Labels
	System-Missing Value
	Measurement Level, Column Width, and Alignment
	Support for Documents

	Coding Your Program
	16-Bit Versus 32-Bit DLL
	Visual Basic Clients
	Borland C++
	Sample Programs

	DLL Procedure Reference
	spssAddMultRespDefC
	spssAddMultRespDefN
	spssCloseAppend
	spssCloseRead
	spssCloseWrite
	spssCommitCaseRecord
	spssCommitHeader
	spssConvertDate
	spssConvertSPSSDate
	spssConvertSPSSTime
	spssConvertTime
	spssCopyDocuments
	spssFreeDateVariables
	spssFreeMultRespDefs
	spssFreeVarCValueLabels
	spssFreeVariableSets
	spssFreeVarNValueLabels
	spssFreeVarNames
	spssGetCaseSize
	spssGetCaseWeightVar
	spssGetCompression
	spssGetDateVariables
	spssGetDEWFirst
	spssGetDEWInfo
	spssGetDEWNext
	spssGetEstimatedNofCases
	spssGetIdString
	spssGetMultRespDefs
	spssGetNumberofCases
	spssGetNumberofVariables
	spssGetReleaseInfo
	spssGetSystemString
	spssGetTextInfo
	spssGetTimeStamp
	spssGetValueChar
	spssGetValueNumeric
	spssGetVarAlignment
	spssGetVarCMissingValues
	spssGetVarColumnWidth
	spssGetVarCValueLabel
	spssGetVarCValueLabelLong
	spssGetVarCValueLabels
	spssGetVarHandle
	spssGetVariableSets
	spssGetVarInfo
	spssGetVarLabel
	spssGetVarLabelLong
	spssGetVarMeasureLevel
	spssGetVarNMissingValues
	spssGetVarNValueLabel
	spssGetVarNValueLabelLong
	spssGetVarNValueLabels
	spssGetVarNames
	spssGetVarPrintFormat
	spssGetVarWriteFormat
	spssHostSysmisVal
	spssLowHighVal
	spssOpenAppend
	spssOpenRead
	spssOpenWrite
	spssOpenWriteCopy
	spssQueryType7
	spssReadCaseRecord
	spssSeekNextCase
	spssSetCaseWeightVar
	spssSetCompression
	spssSetDateVariables
	spssSetDEWFirst
	spssSetDEWNext
	spssSetIdString
	spssSetMultRespDefs
	spssSetTextInfo
	spssSetValueChar
	spssSetValueNumeric
	spssSetVarAlignment
	spssSetVarCMissingValues
	spssSetVarColumnWidth
	spssSetVarCValueLabel
	spssSetVarCValueLabels
	spssSetVarLabel
	spssSetVarMeasureLevel
	spssSetVarNMissingValues
	spssSetVarNValueLabel
	spssSetVarNValueLabels
	spssSetVarName
	spssSetVarPrintFormat
	spssSetVarWriteFormat
	spssSetVariableSets
	spssSysmisVal
	spssWholeCaseIn
	spssWholeCaseOut

	B SPSS Third-Party API for SPSS for Windows
	Introduction
	Contents of the Registry
	Launch
	MenuType
	MenuPos
	ActionID
	SingleSeat
	TBOnly
	Menu
	MenuSeparator
	Minimize
	MenuEnable
	ReadFile
	DeleteFile
	Status of Files

	C Coding Conventions
	Variable and Procedure Names
	Variable Scope
	Object Variables
	Naming Constants

	Commenting Code
	Code Structure

	Index

